Hands-on symbolic search
test generation with Apalache

E553(E)

igor@konnov.phd 5
e

NVidia FM Week

E
lgor Konnov :
J o
Independent security and formal methods researcher == Vienna, Austria 2024-2025

Verifying consensus protocols and smart contracts
Improving Apalache, working on new tools
Principal research scientist at Informal Systems (Web3 — blockchains) 2019-2023

Leading development of Apalache and Quint

Postdoc, assistant professor & permanent researcher at TU Wien & Inria 2011-2019

=11 2

This talk
1. Abit of history =
2. Symbolic search with Apalache @
3. TFTP Protocol in TLA* $0F 4

4. Testing loop for tftpd-hpa with Apalache and Claude &o

[github.com/apalache-mc/apalache]

[apalache-mc.org]

(=] >3]

A=
% APALACHE

A symbolic model checker for TLA+

build |passing

Apalache translates TLA+ into the logic supported by SMT solvers such as Microsoft Z3. Apalache can check
inductive invariants (for fixed or bounded parameters) and check safety of bounded executions (bounded model
checking). To see the list of supported TLA+ constructs, check the supported features. In general, Apalache runs
under the same assumptions as TLC. However, Apalache benefits from constraint solving and can handle
potentially larger state-spaces, e.g., involving integer clocks and Byzantine faults.

To learn more about TLA+, visit Leslie Lamport's page on TLA+ and his Video course.

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
\

J U

Y _ Y 7 \4
INformal TLA+ FOUNDATION
N SYSTEM §/
M &2 INTERCHAIN
N - > J N N Y

7 vienna
LR business

agency

Epoch 1 Epoch 2 Epoch 3

1. SMT transpiler 1. Random. symbolic execution 1. Parallelization

2. Type checker 2. Data generators 2. DIY search

3. Bounded model checker
4 - N\ - N\ - N\
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

what academia need

what engineers need

what customers need

vienna
business
agency

g A 2

Thanh-Hai Tran Marijana Lazi¢ Josef Widder

© biyhngs
. b 178

Jure Kukovec ShonFeder Gabriela Moreira Igor Konnov Thomas Pani Andrey Kupriyanov Philip Offtermatt Rodrigo Otoni
@bugarela @konnov
O (v Universita
. s della
m I_ L h / Svizzera
INJOrmMal &£ INTERCHAIN 2zl — Svi:
SYSTEMS italiana

M IIY(IJG[')tger €9 ZKsynC Governance Protocol (2024)

ChonkyBFT consensus (2024-2025) ‘ L2 Governance Protocol (2025)

Accountability in Ethereum 3-slot

- L | 6
(finality (2024) /| TetraBFT consensus (2024)

Tendermint BFT consensus (2020) :
@) — | Ben-Or's consensus (2024)
Tendermint light client (2020)

Offshoot projects

[quint - lang .0org] [github.com/imcor‘malsystems/atomkraft]
Quint

A —_——— Atomkraft: E2E testing for Cosmos blockchains
modern and executable specification language

Quint helps you write precise specifications and check them automatically. Find subtle bugs

Below we describe what Atomkraft is about, and explain the concepts behind the tool. In case you
before they reach production.

skip that, and jump directly into action, please read our Installation guide to install the tool; afterwz
j following either our Cosmos SDK Token Transfer tutorial, or CosmWasm tutorial.

@ Executable We cover the following topics in this file:

Quint

Modelator: model-based testing framework for TLA+

v checked names and types X not checked

Vv executable X not executable
@ Abstract log-level TEXT

help Show this message and exit.
Quint
v define only what matters X define how things happen, in
detail
apalache Apalache: check whether the JAR file)

@ Modern check Check that the invariants hold in th

info Display information on the loaded mo
load Load a TLA+ model file and parses it
reload Reload model and configuration files
reset Removes any loaded model.

| nfo r m a |. SII’]CG 2021 ’>Gm§>llf’ Generate execution traces that reach

Quint

Generate execution traces by simulat
Type check the loaded model, if avai
Print current version of Modelator. 9

Symbolic search
Apalache

Example: Circular buffer

42

10

!

head

T

tail

11

Example: Circular buffer

1.

0 0 33

5

42

10

T

head head

T

GET — 33, head’ = (head + 1) % N

!

tail

12

Example: Circular buffer

0 0 33 5 42 10 59 0
head head +ait tail

1. GET — 33, head’ = (head + 1) % N

2. PUT(55), tail’ = (tail + 1) % N

13

9
10
11
12
13
14
13
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31

CONSTANTS
* Size of the circular buffer.
\x @type: Int;
BUFFER_SIZE,
* The set of possible buffer elements.
* @type: Set(Int);
BUFFER_ELEMS

ASSUME BUFFER_SIZE > 0

v VARIABLES

* The integer buffer of size BUFFER_SIZE.

* @type: Int —> Int;

buffer,

* Index of the next element to POP.

*x @type: Int;

head,

* Index of the next free slot for PUSH.
* @type: Int;

tail,

* Number of elements currently stored.
*x @type: Int;

count

41
42
43
44
45
46
47

50
51
92
53
54
55
56
57

Put(x) ==

Put::

LET nextTail == (tail + 1) % BUFFER_SIZE IN
/\ buffer' = [buffer EXCEPT ![tail] = x]

/\ head' = head

/\ tail' = nextTail

/\ count' = count + 1
Get ==
Get::
LET nextHead == (head + 1) % BUFFER_SIZE IN
/\ count > 0@

/\ UNCHANGED buffer
/\ head' = nextHead
/\ tail' = tail

/\ count' = count - 1

14

41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

Put{x) ==
Put::
LET nextTail == (tail + 1) % BUFFER_SIZE IN

/\ bUfferl = [bUffer EXCEPT ![tail] = XI 33 * Initial state

/\ head' = head 34 Init ==
/\ tail' = nextTail 35 /\ buffer = [i \in 0@..(BUFFER_SIZE - 1) |-> 0]
/\ count' = count + 1 36 /\ head = 0
37 /\ tail = 0
Get ==
38 count = 0
Get:: @
LET nextHead == (head + 1) % BUFFER_SIZE IN
/\ count > 0 59 \x Either Put or Get may happen in any step.
/\ UNCHANGED buffer 60 Next ==
/\ head' = nextHead 61 \/ \E x \in BUFFER_ELEMS:
/\ tail' = tail 62 Put(x)
/\ count' = count - 1 63 \/ Get

70 * Safety property we *xintend* to hold, but it is violated:
71 * count must never exceed the buffer capacity.

72 Safelnv == count <= BUFFER_SIZE

15

41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

Put(x) ==
Put::
LET nextTail == (tail + 1) % BUFFER_SIZE IN
/\ buffer' = [buffer EXCEPT ![tail]l = x] 33

/\ head' = head 34
/\ tail' = nextTail 35
/\ count' = count + 1 36
37
Get == 38
Get::
LET nextHead == (head + 1) % BUFFER_SIZE IN
/\ count > @ 59
/\ UNCHANGED buffer 60
/\ head' = nextHead 61
/X Eail® '=-tail 62
/\ count' = count - 1 63

* Initial state
Init ==
/\ buffer =
/\ head = 0
/\ tail = 0
/\ count = @

[i \in @..(BUFFER_SIZE - 1) |—> 0]

* Either Put or Get may happen in any step.
Next ==
\/ \E x \in BUFFER_ELEMS:
Put(x)

\/ Get -
e How do we find this violation?

70 \x Safety property we xintend* to hold, but
71 * count must never exceed the buffer capacity.
72 Safelnv == count <= BUFFER_SIZE

is violated:

16

Instance MC10u8 BuggyCircularBuffer:

- BUFFER_SIZE =10
- BUFFER_ELEMS =0..255

Explicit-state model checker TLC:
over 40 min on 30 CPU cores

over 3 billion states

400G disk space = “No space left on device”

Can we analyze it without
enumerating all states?

17

Epoch #1: Bounded model checking (symbolic)

Explore all paths up to k steps, e.g., 20

Find schedule

Find payloads

count=0

count=1

count= 2

count=1

~

SMT

Kind of symbolic
breadth-first search

(Microsoft 23)/

18

Apalache is fast?

Bounded model checking with Apalache
$ apalache-mc check

3 sec to invariant violation (11 steps)

Explicit-state model checker TLC:
over 40 min on 30 CPU cores
over 3 billion states

400G disk space = “No space left on device”

(we could do trivial abstraction)

20

General perception: It is slow

Increasing the number of checkable steps would improve usability #1571

danwt started this conversation in General

Use Z3 in parallel mode #2315 Category

7 danwt on Mar 28, 2022

$~ #2990 L)l General

Problem description spliting trace length to speed up apalache simulate #2419
In my experience it can be hard @ rnbguy opened on
can check can be quite limited.
invariants, and medium/large m Is your featu - . : '
mndale a rnbguy opened on Feb 16, 2023 - edited by rnbguy Edits ¥ Contributor
ITFJSON asinit TLAs ;

It would be nice tq Is your feature request related to a problem? Please describe

For one, lwant to |

Apalache simulate still slow if the model is too big.

@ rrbauy opened on Miar s 2023 Describe the Describe the solution you'd like

Is your feature request related to a problem? Please de!

When | use Apalache to simulate random traces, but | don't care about an invariant being broken, It makes sense to split the

| want to restart model exploration from an ITF trace. | have a ITF JSON state, but traces into multiple short lengths and solve them separately.
operator in the specification.
We only have to make sure that the init operator of each run is the last state operator of the previous run.

Describe the solution you'd like
21

| would like a checker argument which | can use to pass the ITF JSON string - representing the concrete value assignment of
the model state.

Time (seconds)

w

10°F

102}

101}

Time vs BUFFER_SIZE (log scale)

25 min
Bounded model checking
for more steps
82 sec
3 sec
10.0 125 15.0 7.5 C(D 225 25.0 275 C(D
BME

22

Weird turn

In 2022-2023, after plenty of discussions with engineers:

| wrote a randomized simulator in TypeScript a la PBT

...and everybody was: “It's really fast!”

Some of my peers use exclusively this simulator

23

Random search?

TLC -simulate -depth 100:
Finds a counterexample in 0.25 sec!

Needs to explore only 174K states

Under 1 sec for BUFFER_SIZE in { 20, 30, 100 }

24

By fixing the search procedure,
we are missing easy bugs!

25

By fixing the search procedure,

we are missing easy bugs!

Find schedule

Find payloads ::

~

put 42 Q
put 22
" SMT
Qet (Microsoft 23)/

Bounded model checking

26

Epoch #2: Randomized symbolic execution

Find schedule

Find payloads : :

~

put 42 a
put 22
" SMT
\\gEt (Microsoft 23)/

Bounded model checking

Generate
schedule

put
put

get

Randomized symbolic execution

ind payloads

x

22

SMT

~

\ 42 (Microsoft 23)/

27

apalache-mc simulate

Finds bugs faster than bounded model checker

Easier for Z3, as it is mostly doing propagation
Trivially parallelizable

¥ Hard to customize

28

Epoch #3: DIY search

Idle
Write your own search scripts in any language |
loadSpec
Prioritize schedules as you like +

Loaded

Evaluate them with Apalache and Z3] \

assumeTransition nextStep disposeSpec

N/

Query for traces and enumerate models FErapared

assumeState / query /
checklnvariant / nextModel /
rollback

N

29

TFTP
Trivial File Transfer Protocol

TFTP

Simple protocol to send and receive files over UDP since 1992

Network booting, transferring firmware to network devices

Network Working Group
Request For Comments: 1350
STD: 33

Obsoletes: RFC 783

THE TFTP PROTOCOL (REVISION 2)

Status of this Memo

K. Sollins
MIT
July 1992

This RFC specifies an IAB standards track protocol for the Internet
community, and requests discussion and sugges*” -~~~ “-~ “ooooooot

Please refer to the current edition of the "I
Standards" for the standardization state and
Distribution of this memo is unlimited.

Network Working Group
Request for Commments: 2347
Updates: 1350

: 1782

Obsoletes
Category:

Status of

This d
Intern

RFCs 1350, 2347-2349, 1123

Network Working Group

Request for Commments: 2349

Updates: 1350
Obsoletes: 1784

Category: Standards Track

G. Malkin

Bay Networks

A. Harkin

Hewlett Packard Co.
May 1998

TFTP Timeout Interval and Transfer Size Options

Network Working Group
Request for Commments: 2348
Updates: 1350

Obsoletes: 1783

Category: Standards Track

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state

TFTP Blocksize Option

Status of this Memo Copyright Notice

net standards ti
discussion and
he current edit:

D 1) for the st
stribution of t

Abstract

Summary

TFTP is a very simple protocol used to transfer files.

It is from

this that its name comes, Trivial File Transfer Protocol or TFTP.

Each nonterminal packet is acknowledged separately.

describes the protocol and its types of packets.

This document
The document also
explains the reasons behind some of the design decisions.

. Copyright Notice

Copyri
Abstract

The Tx
transf
remote
allow

remote host.

and status of this protocol. Distribution of this memo is unlimited.

Copyright (C) The Internet Society (1998). All Rights Reserved.

The Trivial File Transfer Protocol [1] is a simple, lock-step, file
transfer protocol which allows a client to get or put a file onto a

Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract

The Trivial File Transfer Protocol [1] is a simple, lock-step, file
transfer protocol which allows a client to get or put a file onto a
remote host. One of its primary uses is the booting of diskless
nodes on a Local Area Network. TFTP is used because it is very
simple to implement in a small node's limited ROM space. However,
the choice of a 512-octet blocksize is not the most efficient for use
on a LAN whose MTU mav 1500 octets or areater.

31

Happy paths are easy only read requests in this talk

172.20.0.11:1025 172.20.0.10:1025 172.20.0.10:69 172.20.0.11:1025 172.20.0.10:1025 172.20.0.10:69
RRQ(file1) RRQ(file1, {'blksize": 2048}) 1
DATA(blk=1, 512B) _ OACK(blk=0, {blksize": 512})
ACK(blk=1) ACK(blk=0) N

DATA(blk=2, 512B) DATA(blk=1, 512B)

A

ACK(blk=1)
ACK(blk=2)

v

v

RFC 1350 S RFC 2347

DATA(blk=3, 0B)

A

DATA(blk=3, 0B)

A

v

ACK(blk=3)

v

A

172.20.0.11:1025 172.20.0.10:1025 172.20.0.10:69 ACK(blk=3)

v

172.20.0.11:1025 172.20.0.10:1025 172.20.0.10:69

32

TFTP challenges for verification tools

o &> b

UDP: packet loss, reordering, retransmission

Large parameter space: 64K of ports, block sizes, file sizes
Retransmission timeouts

Some operations are input/output

Some are one-sided (errors, termination)

TFTP is only called trivial

33

Specification in TLA"

Initial spec

Client: 5 actions

Server: 5 actions

Environment: 1 action

Size: about 800 LOC

Next ==
\x the actions by the clients
\/ \E srcIp \in CLIENT_IPS, srcPort \in PORTS:
\E filename \in DOMAIN FILES, timeout \in 1..255:
* "man tftpd": 65464 is the theoretical maximum for block size
* https://linux.die.net/man/8/tftpd
\E tsize \in @0..FILES[filename], blksize \in 0..65464:
* choose a subset of the options to request
\E optionKeys \in SUBSET OPTIONS_RF(C2349:
LET options ==
mk_options(optionKeys, blksize, tsize, timeout)
IN
ClientSendRRQ(srcIp, srcPort, filename, options)
\/ \E udp \in packets:
\/ ClientRecvDATA(udp)
\/ ClientRecvOACK(udp)
\/ ClientRecvErrorAndCloseConn(udp)
\/ \E ipPort \in DOMAIN clientTransfers:
ClientTimeout(ipPort)
* the server
\/ \E udp \in packets:
\/ ServerRecvRRQ(udp)
\/ ServerSendDATA(udp)
\/ ServerRecvAckAndCloseConn(udp)
\/ ServerRecvErrorAndCloseConn(udp)
\/ \E ipPort \in DOMAIN serverTransfers:
ServerTimeout(ipPort)
\x handle the clock and timeouts
\/ \E delta \in 1..255:
AdvanceClock(delta)

35

Example: ClientSendRRQ

* A client sends a read request to the server. /\ clientTransfers' = [
* @type: (Str, Int, Str, Str -> Int) => Bool; p \in DOMAIN clientTransfers \union {<<_srcIp, _srcPort>>} |-

IF p = <<_srclp, _srcPort>>
THEN [port |—> 69, \x initial port before negotiation
tsize |—> 0,
blksize |-> get_or_else(_options, "blksize", 512),
timeout |-> get_or_else(_options, "timeout", 1),
blocks |-> <<>>,
blockNum |—> 0,
timestamp |-> clock,
transferred |—> 0,
proto |—>
IF DOMAIN _options = {}
THEN PROTO_OPTIONS_NO ELSE PROTO_OPTIONS_YES

ClientSendRRQ(_srcIp, _srcPort, _filename, _options) ==
* We only specify the "octet" mode:
* "mail" mode is obsolete as per RFC 1350, what is "net
ClientSendRRQ: :
LET rrq == RRQ(_filename, "octet", _options)
udp == [srcIp |-> _srcIp,
srcPort |-> _srcPort,
destIp |-> SERVER_IP,
destPort |-> 69, * the port is fixed as per
payload |-> rrq]
IN
/\ <<_srcIp, _srcPort>> \notin DOMAIN clientTransfers
* RFC-2349: In Read Request packets, a size of "@" is s
/\ "tsize" \in DOMAIN _options => _options["tsize"] = 0

]
ELSE clientTransfers[p]
]
/\ packets' = packets \union {udp}
/\ lastAction' = ActionClientSendRRQ(udp)
/\ UNCHANGED <<serverTransfers, clock>>

36

Make sure the spec does something

172.20.0.11:1027 172.20.0.10:1028

RRQ(file3)

172.20.0.10:69

DATA(blk=1, 512B)

A

ACK(blk=1)

v

DATA(blk=2, 512B)

A

ACK(blk=2)

v

DATA(blk=3, 512B)

A

* Check this falsy invariant to see an example ACK(blk=3)

RecvThreeDataBlocksEx ==
~(\E p \in DOMAIN clientTransfers: 172.20.0.11:1027 172.20.0.10:1028
Len(clientTransfers([p]l.blocks) >= 3)

>

v

172.20.0.10:69

37

Initial specification effort

1. Relatively straightforward with my experience
2. Most of my time went into switching between RFCs
3. Generating repetitive type definitions with LLMs

4. Playing with falsy invariants to produce examples

B
Ol
[=]

[github.com/konnov/tftp-symbolic-testing] 13 hours = 2 days

38

How does it connect to the
implementation?

Tester-implementation game

Player 1 (tester) Player 2 (SUT)
1. Guess next transition with inputs
2. Execute the transition. Respond.

3. Evaluate the response. Repeat 1.

Multishot

input-output conformance testing

40

Challenges

1. Completely random generation is really low quality
2. Produce high-quality inputs

3. Develop the harness and testing infrastructure

41

1. Completely random generation is really low quality el
2. Produce high-quality inputs PLORATIG -
3. Develop the harness and testing infrastructure Sure, | will help you to

write the test harness!

e Give me a framework\
Y in Golang, Rust, etc.

¥

Bl

% | don’t want to learn
- ANN TLA" and Python

BLOCKCHAIN
I’m coding /

(You have to fix my

AL CODING bugs later. He-he)

ENGINEER AGENT

42

New testing loop with Apalache

Harness (Python)

for n steps <

Apalache &
TLA" Spec
1) loadSpec
- (1) p
4 (2) assumeTransition; nextStep
¢
(3) query
¢

(6) assumeTransition; nextStep

(4) Send command

%

(5) Get response

P>

<

<¢

- |«

(7) assumeState

No solution? => Report error

43

¥ prompt-test-harness.md > (2 ## Requirement 2

1

O 0O ~NOoOYUL B WN

NN NNNNNNNRRRRBRBRBRR B B
0N OV SE WNREO®OOWNOU_WNIERS®

29

You are a protocol testing engineer. Your goal is to use the TLA+ specification
of TFTP to create a test harness that produces new tests by analyzing symbolic

Below are the requirements of this project. Do not change this text unless
explicitly instructed to do so.

Requirement 0

The TLA+ specification of the TFTP protocol is provided in the [spec][] file.

The test harness should utilize this specification to generate symbolic

specification, unless you are explicitly instructed to do so.
Requirement 1

The test harness must be implemented in Python and should intd

Python script is located at [test-harness](./test-harness). T
should use Poetry to pull in dependencies.

Requirement 2 RI CODIMG

AGENT

implemented in the [client.pyl[] file, which provides functions to send requests
to Apalache and receive responses. The harness should utilize these functions to

Requirement 3

Host Machine

harness.py

- Coordinates symbolic execution
- Manages Apalache server

- Controls Docker containers

- Generates and saves test runs

¥

T

v

Apalache Server
(port 8822)

1
Docker Manager |
- Network: 172.20.0.0/24|

J

Docker Network

| UDP TFTP packets |

|

I 1
| |
| (172.20.0.0/24) |
I I
| |
I] 1 1
I | |
v v v |
1T 1 — | |
TFTP Server | | Client 1 | | client 2 | |
172.20.0.10 | | 172.20.0.11 | | 172.20.0.12 | |
| | I I I I
tftp-hpa | | Python | | Python | |
Port: 69 | | TCP: 15001 | | TCP: 15002 | |
Data:1024-27| | (control) | | (control) | |
| 1 | | PRI | |
I
I
I
I
I
]

Docker Containers

44

Debugging the harness

=~ 1 week
=~ 200 premium requests (Copilot)

1. Lots of debugging

2. Explaining Claude how to handle packets
3. Analyzing logs
4. Fixing bugs in the generated harness code

5. Claude lost in abstractions (e.g., clients in docker vs. clients in spec)

45

How it looks like

__main__ - INFO - === Starting test run generation 2 (max
__main__ - INFO - Trying transition

client - INFO - Transition ©: ENABLED

__main__ - INFO - Transition © is ENABLED

client - INFO - Moved to step

__main__ - INFO -

__main__ - INFO - Trying transition

client - INFO - Transition 4: DISABLED
__main__ - INFO - Transition 4 is DISABLED
__main__ - INFO - Rollback to snapshot
__main__ - INFO - Trying transition

client - INFO - Transition 5: DISABLED
__main__ - INFO - Transition 5 is DISABLED
__main__ - INFO - Rollback to snapshot
__main__ - INFO - Trying transition

client - INFO - Transition 3: ENABLED

__main__ - INFO - Transition 3 is ENABLED
client - INFO - Moved to step

__main__ - INFO - Executing TFTP operation for transition
__main__ - INFO - Retrieved trace with 2 states
__main__ - INFO - Action: Advance Clock by

__main__ - INFO Sleeping for 1 seconds to advance clock...

__main__ - INFO v Clock advanced by 1 seconds
__main__ - INFO

__main__ - INFO - Trying transition

client - INFO - Transition 4: DISABLED
__main__ - INFO - Transition 4 is DISABLED
__main__ - INFO - Rollback to snapshot
__main__ - INFO - Trying transition

client - INFO - Transition 6: DISABLED
__main__ - INFO - Transition 6 is DISABLED
__main__ - INFO - Rollback to snapshot
__main__ - INFO - Trying transition

client - INFO - Transition ©: ENABLED
__main__ - INFO - Transition © is ENABLED
client - INFO - Moved to step

TFTP server watchdog started with PID 7
Started rsyslog daemon
Starting TFTP server (attempt 1/1)
Command: in.tftpd -vvv --foreground --address 172.20.0.10:69 --user nobody -
4:1027 --secure /var/tftp
Started tcpdump with PID 11 (unbuffered output)
tcpdump: data link type LINUX_SLL2
tcpdump: listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot
ytes
21:21:00.532140 eth®@ In IP (tos 0x@, ttl 64, id 11761, offset @, flags [DI
7), length 52)

172.20.0.11.1024 > 172.20.0.10.69: [bad udp cksum 0x586f -> @x514d!] TF1
RQ "filel" octet timeout 1
21:21:00.533368 eth® Out IP (tos 0x@, ttl 64, id 23847, offset @, flags [nc
(17), length 40)

172.20.0.10.1027 > 172.20.0.11.1024: [bad udp cksum ©0x5863 -> @xa93a!] L
21:21:00.582224 eth® In IP (tos 0x@, ttl 64, id 52516, offset @, flags [DI
7), length 64)

172.20.0.12.1025 > 172.20.0.10.69: [bad udp cksum 0x587c -> @x4ba7!] TF1
RQ “filel" octet blksize 513 timeout 2
21:21:00.583130 eth® Out IP (tos 0x@, ttl 64, id 33392, offset @, flags [nc
(17), length 52)

172.20.0.10.1024 > 172.20.0.12.1025: [bad udp cksum ©0x5870 -> 0xa397!] L
21:21:00.628954 eth®@ In IP (tos 0x@, ttl 64, id 11822, offset @, flags [DI
7), length 32)

172.20.0.11.1024 > 172.20.0.10.1027: [bad udp cksum @0x585b -> @0x9f91!] L
21:21:00.629025 eth® Out IP (tos 0x@, ttl 64, id 23848, offset 0, flags [nc
(17), length 544)

172.20.0.10.1027 > 172.20.0.11.1024: [bad udp cksum @x5a5b -> @0xa8be!] L
21:21:00.686941 eth@ In IP (tos 0x@, ttl 64, id 52596, offset @, flags [DI
7), length 58)

46

172.20.0.11:1024 172.20.0.10:1024 172.20.0.10:69

® Clock +1s (total: 1s)

Generating sequence diagrams

RRQ(file1, {'timeout’: 1})

OACK({timeout": 1})

172.20.0.11:1024 172.20.0.11:1025 172.20.0.11:1026 172.20.0.12:1024 172.20.0.10:1024 172.20.0.10:1027 172.20.0.1(ACK(blk=0)
_ DATA(blk=1, 512B)
® Clock +1s (total: 1s) =
ACK(blk=1) .
RRQ(file1, {timeout’: 1}) g
> _ DATA(blk=2, 512B)
OACK([timeout': 1) =
< © Clock +1s (total: 3s)
RRQ(file1, {timeout: 1}) <
oA ACK(blk=2)

OACK([{timeout: 1})
 Switching to SUT turn to handle timeout

A
|

ERROR(?,)

v

ERROR(,) 172.20.0.11:1024 172, 172.20.0.11:1024 172.20.0.10:1024 172.20.0.10:69

RRQ(file1, {time

RRQ(file1, {'timeout" 1})

A\ 4

OACK({'timeout': 100})

Trial and fix. A lot! i ACK(blk=0) _ OACK({timeout’ 13)

DATA(blk=1, 5128) ACK(blk=0)

4

ACK(blk=0) _ DATA(blk=1, 512B)

© Switching to SUT turn to handle timeout
ACK(blk=0)

DATA(blk=1, 512B)

A 4

A

172.20.0.11:1024 172.20.0.11:1025 172.20.0.11:1026 172.20.0.12:1024 172.20.0.10:1024

47
172.20.0.11:1024 172.20.0.10:1024 172.20.0.10:69

Spec vs. Code (1)

RFC 2347: “...the server should simply omit the option from the OACK,
respond with an alternate value, or send an ERROR packet, with error
code 8, to terminate the transfer.”

The server sends ERROR from the control port (69). Nope.

207
208
209
210

211
212
213

s

207
208
209

210
211
212
213

@@ -207,7 +207,7 @@ _ServerSendErrorOnRrq(_rrq, _clientIpAndPort, _newServerPort, _rcvdPacket) ==
ServerRecvRRQthenSendError::
\E errorCode \in DOMAIN ALL_ERRORS:
LET errorPacket == [

srcIp |-> SERVER_IP, srcPort |-> 69,
srcIp |-> SERVER_IP, srcPort |-> _newServerPort,
destIp |-> _clientIpAndPort([1], destPort |-> _clientIpAndPort([2],
payload |-> ERROR(errorCode)

48

Harness vs. Code (2)

172.20.0.12:1024 172.20.0.10:1024 172.20.0.10:1027

® Clock +1s (total: 1s)

172.20.0400:69

RQ(file1, {'timeout: 1})

v

out: 1}) /
RRQ(file1, {timeout: 1}) N
out: 1})
') .
ERROR(?,) A
RRQ(file1, {timeout” 100})
s OACK({'timeout': 100})
ACK(blk=0) R
Il DATA(blk=1, 512B)
ACK({blk=0)
172.20.0.12:1024 172.20.0.10:1024 172.20.0.10:1027

172.20.0.10:69

OACK({'timeout": 100})

ACK (blk=0)

DATA(blk=1, 512B)

ACK(blk=0)

The client has not received DATA(1) yet
and sends ACK(0) again

The harness expects a timeout

Fix #2: Give the client a chance to receive
DATA after timeout (UDP is hard!)

Spec vs. Code (3)

172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1026 172.20.0.10:1027 172.20.0.10:69

© Clock +1s (total: 1s)
® Clock +1s (total: 2s)

RRQ(file1, {'timeout’: 1})

OACK({'timeout": 13)

Our server spec did not a e >
. DATA(blk=1, 5128)
send duplicate paCkEtS! RRQUfile], {blksize": 513, ‘timeout': 2}) R
OACK({'blksize': 513,ftimeout": 2})
ACK(blk=0)]
DATA(blk=1, 512B)

UDP is hard @9

X SPEC MISMATCH: AssumeState: DISABLED

172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1026 172.20.0.10:1027 172.20.0.10:69

* The server receives an ACK packet and resends DATA that it sent in the past.

\s This is

to fix the mismatch found by the test harness.

* @type: $udpPacket => Bool;

- ServerResendDATA(_udp) ==

ServerResendDATA::

LET ipPort == <<_udp.srcIp, _udp.srcPort>> IN
/\ IsACK(_udp.payload)

/\ _udp.destIp = SERVER_IP

/\ ipPort \in DOMAIN serverTransfers

/\ \E

dataPacket \in packets:

LET ack == AsACK(_udp.payload)

IN
*k
/X
\3k
/\
/\
/X
/\
/\
\k
/X
\3k
/\
/\

data == AsDATA(dataPacket.payload)

transfer == serverTransfers[ipPort]

* update the timestamp of the last transfer I:Ix #3.

newTransfer == [transfer EXCEPT !.timestamp = clock] -
make sure that we receive from the correct port Let the Server re_send DATA
_udp.destPort = transfer.port

The DATA packet is sent in response to the ACK.

ack.blockNum + 1 = data.blockNum

dataPacket.srcIp = SERVER_IP

dataPacket.srcPort = _udp.destPort

dataPacket.destIp = _udp.srcIp

dataPacket.destPort = _udp.srcPort

do not receive packets if the connection must timeout

clock <= transfer.timestamp + transfer.timeout

either we have more data to send, or we send exactly @ bytes in the last block
serverTransfers' = [serverTransfers EXCEPT ![ipPort] = newTransfer]
lastAction' = ActionRecvSend(_udp, dataPacket) 51

/\ UNCHANGED <<packets, clientTransfers, clock>>

Spec vs. Code (4)

Per RFC 1350, the server does
not have to reply on ERROR!

There is input, but no output!

The server in the spec had not
received ERROR so far

Oops. Our generated harness was
supposed to work this way

172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1024

RRQ(file1, {timeout: 1})

OACK({'timeout": '1})

‘. ..
L OACK([})
ACK(blk=0) i
DATA(blk=1, 512B)
‘ ..

OACK({})

f ERROR(8,) \
@ Clock +1s (total: 1s)

@ Clock +1s (total: 2s)

RRQ(file1, {blksize" 0, 'timeout": 1})

>

172.20.0.10:69

_ «... FRROR®,) Y,

172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1024

172.20.0.10:69

52

How do we debug this divergence?

172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1024 172.20.0.10:69 "#bigint™: "2"
v transferred: (1) {"#bigint": "@"}
7 e : ll#bigintll: lloll
RRQ(file1, {'timeout": 1}) ol v tsize: (1) {"#bigint": "0"}
. | "#bigint": npn
‘OACK(“"“”” __________________ > clock: (1) {"#bigint": "2"}

+}

> lastAction: (2) {tag: "ActionClientSendRRQ", value: {..
> packets: (1) {"#set": [{.}, {.}, {.}, {.}, {.}, {.}]}

N 0ACK({})
k! v serverTransfers: (1) {"#map": [[{.}, {.}]11}
ACK(blk=0) v "#map”: (1) [[{.}, {.}]]
> v [0]: (2) [{.}, {.}]
DATA(blk=1, 512B) v [@8]: (1) {"#tup": ["172.20.0.11", {.}]}
LT LT T T T T S P P v "#tup": (2) [“172.29.0.11”’ {”
OACK({}) [(0]: "172.20.0.11"
< v [1]: (1) {"#bigint": "1024"}
ERROR(8,) "#bigint": "1024"

v [1]: (8) {blksize: {..}, blockNum: {..}, blocks: [], port: {.}, ti
> blksize: (1) {"#bigint": "512"}
> blockNum: (1) {"#bigint": "1"}
blocks:
v port: (1) {"#bigint": "1024"}
> R 024"
> timeout: (1) {"#bigint": "1"}

SRS SR S R v T S TRl PR T U

P..... N The spec still has the transfer
172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1024 172.20.0.10:69 172200111024 and 172200101024 53

© Clock +1s (total: 2s)

@ Clock +1s (total: 1s)

RRQ(file1, {blksize": 0, 'timeout": 1})

ua

RFC 2347: “In order to create a connection, each end of the
connection chooses a TID for itself, to be used for the duration
of that connection. The TID's chosen for a connection should
be randomly chosen, so that the probability that the same
number is chosen twice in immediate succession is very low.”

We have hit the case of low probability?

54

Revised testing loop with Apalache

for n steps <

Apalache Harness tftp_client TFTP server
P (Python) (Python) (tftpd-hpa)
Send command 1
: L | UDP packet 1
Commt;Jnlcatlon as Get responses{ } >
efore
»1 UDP packet 2
and B <
Send command 2 P UDP packet3 |
| UDP packet 4
i’ -
Response set: Get responses { »4

-1 ooo

<¢

UDP packet 5 /

55

Does this work?

172.20.0.11:1024

172.20.0.12:1025 172.20.0.10:1027 172.20.0.10:69

RRQ(file1, {'timeout’: 1})

A 4

OACK({'timeout 1})

OACK({timeout’: 1})

ERROR(S,) ~ ERROR is still blocking the spec

172.20.0.11:1024

»

RRQ(file1, {'timeout": 2})

B
>

OACK({'timeout’: 2})

172.20.0.12:1025 172.20.0.10:1027 172.20.0.10:69

57

* The server receives RRQ and sends one of: DATA, OACK, or ERROR.

FIX #5: the server may reuse * @type: $udpPacket => Bool;
the port if there was an ERROR ™ et maor) = o)

/\ _udp.destIp = SERVER_IP
/\ _udp.destPort = 69
/\ LET rrq == AsRRQ(_udp.payload)
clientIpAndPort == <<_udp.srcIp, _udp.srcPort>> IN

\w A rliant ran anan multinla rannarctinne frap different ports
* the server allocates a new port for the connection, if it can find one

/\ \E newServerPort \in PORTS: ers
/\ \/ \A p \in DOMAIN serverTransfers: nnection, if it can find one
serverTransfers[p].port /= newServerPort

* Or, there was an ERROR packet that cancelled the active transfer.erport

* This h to conform tftpd-hpa. cancelled the active transfer.

\/ \E packet \in packets: -
/\ IsERROR(packet.payload) Easy In TI_A+ hard in stricter
/\ packet.destIp = SERVER_IP
/\ packet.destPort = newServerPort Spﬂﬂlﬁﬂatlﬂn |al1gllagBS'

AL A/COr'dlng TO RFUZ347, The Server may respond wWITh DATA or UACK
/\ \/ _ServerSendDataOnRrq(rrq, clientIpAndPort, newServerPort, _udp)

\/ _ServerSendOackOnRrq(rrq, clientIpAndPort, newServerPort, _udp)
\/ _ServerSendErrorOnRrq(rrq, clientIpAndPort, newServerPort, _udp)

Spec vs. Code (5)

Duplicate and outdated packets!

172.20.0.11:1024 172.20.0.10:1027 172.20.0.10:69

® Clock +1s (total: 1s)

® Clock +1s (total: 2s)

@ Clock +1s (total: 3s)

RRQ(file1, {'blksize": 513, ‘timeout’: 1})

v

OACK({'blksize": 513, 'timeout": 1})

OACK({blksize": 513, 'timeout": 1})

® Clock +1s (total: 4s)

‘

OACK({blksize": 513, 'timeout": 1})

172.20.0.11:1024 172.20.0.10:1027 172.20.0.10:69

59

Spec vs. Code (5)

172.20.0.11:1024 172.20.0.10:1027 172.20.0.10:69

Dupiate an otdatd packets!

RRQ(file1, {'blksize": 513, 'timeout": 1})

* @type: $udpPacket => Bool;

-ServerSendDup(_udp) == -
ServerSendDup: : OACK({'blksize': 513, ‘timeout’: 1})
/\ _udp.srcIp = SERVER_IP o S N eSSBS
/\ lastAction' = ActionRecvSend(_udp) _ OACK({'blksize': 513, 'timeout’: 1})
/\ UNCHANGED <<packets, serverTransfers, clientTransfers, clock>> gm
In TLA" theory, this is just a . OACK((blsize': 513, timeout: 1))
StUttermg StEP 172.20.0.11:1024 172.20.0.10:1027 172.20.0.10:69

60

Spec vs. Code (5)

DATA(blk=2, 512B)

o omewasm
ACK(blk=2) "
P T— A). vl
» DATA(blk=3, 0B)
The client sends ACK
on the last packet (transfer finished)
ACK(blk=3) S
RRQ(file1, {'timeout’: 1}) .
A s i “The server recycles the port immediately
172.20.0.11:1024 172.20.0.11:1026 172.20.0.12:1025 172.20.0.10:1026 172.20.0.10:1027 172.20.0.10:69

61

RFC 2347: “The end of a transfer is marked by a DATA packet that contains
between 0 and 511 bytes of data (i.e., Datagram length < 516). This packet
is acknowledged by an ACK packet like all other DATA packets. The host
acknowledging the final DATA packet may terminate its side of the
connection on sending the final ACK. On the other hand, dallying is
encouraged. This means that the host sending the final ACK will wait for a
while before terminating in order to retransmit the final ACK if it has been
lost. The acknowledger will know that the ACK has been lost if it receives
the final DATA packet again. The host sending the last DATA must
retransmit it until the packet is acknowledged or the sending host times out.
If the response is an ACK, the transmission was completed successfully. If
the sender of the data times out and is not prepared to retransmit any
more, the transfer may still have been completed successfully, after which
the acknowledger or network may have experienced a problem. It is also
possible in this case that the transfer was unsuccessful. In any case, the
connection has been closed.”

62

FIX #6: reuse the ports from
DATA(blk=2, 5128) Cﬂmpleted transfers

DATA(blk=2, 512B)

‘ diff --git a/spec/tftp.tla b/spec/tftp.tla
index 57265a6..ae20c73 100644

--- a/spec/tftp.tla

+++ b/spec/tftp.tla

@@ -233,7 +233,9 @@ ServerRecvRRQ(_udp) ==

172.20.0.11:1024

+ 4+ + |

* the server allocates a new port for the connection, if it can find one
/\ \E newServerPort \in PORTS:
/\ \/ \A p \in DOMAIN serverTransfers:
serverTransfers[pl.port /= newServerPort
\/ serverTransfers([p].port /= newServerPort
\x FIX #6: allow reusing ports from completed transfers
\/ serverTransfers([p].transferred = serverTransfers[p].tsize
\x Or, there was an ERROR packet that cancelled the active transfer.
* This has a bad smell, but is needed to conform tftpd-hpa.
\/ \E packet \in packets:

UATN T T

172.20.0.11:1026 172.20.0.12:1025 172.20.0.10:1026 172.20.0.10:1027 172.20.0.10:69

63

Test traces get longer

Ran 100 test runs 100 steps each: 37 of them diverge

Hard to analyze these traces by hand LLM hallucinated too much in

identifying the root cause
TFTP Test Divergence Analysis

Based on my analysis of all diverging test runs in test-results/, here are the key findings:

Summary

37 diverging test runs with 3 main patterns:

1. Duplicate DATA packets (26 cases - 81%): The SUT sends DATA packets with the correct
block number, but these are retransmissions/duplicates

2. Duplicate OACK packets (5 cases - 16%): The SUT sends duplicate OACK packets during
negotiation

3. Unexpected ACK (1 case - 3%): Rare case of unexpected ACK packet 64

Spec vs. Code (7)

RRQ(file1, {timeout: 1})

ERROR(8,)

OACK({timeout: 1})
-«
OACK([timeout: 1})
The server starts data exchange
L OACK(CHimeovt:. 1) 2 z sisiigenn 2
OACK({timeout' 1})
ERROR(8,)
OACK([timeout: 1})

e In the middle, the server spec

DATA(blk=1, 5128)

interprets an earlier RRQ as

o no-negotiation case, and sends

DATA(1) again!

DATA(blk=1, 5128)

DATA(blk=2, 5128)

— _main__ - INFO - Turn: sut. transitions to try

— _main__ - INFO - Trying transition

- client - INFO - Transition &: ENABLED

- client - INFO - Moved to step

- _main__ - INFO - Assume lastAction: ActionRecvSend(sent=UdpPacket(srcIp=
- client - INFO - AssumeState: ENABLED

— _main__ - INFO — EXECUTE ACTION: ActionRecvSend(sent=UdpPacket(srcIp=
__main__ - INFO - v Received packet matches the spec

__main__ - INFO -

DATA(blk=2, 5128)

DATA(blk=1, 5128)

® Clock +1s (total: 55)

DATA(blk=2, 5128)

DATA(blk=2, 5128)

ACK(blk=2)

DATA(blk=2, 5128)

[
(1]
S D e B R P R MO s -
~N]

DA =3, 0B)

Last SUT operation does NOT match the spec -t ———

65

diff --git a/spec/tftp.tla b/spec/tftp.tla
index c48f936..df4laaa 100644
--— a/spec/tftp.tla
+++ b/spec/tftp.tla
@@ -145,6 +145,8 @@ _ServerSendDataOnRrq(_rrq, _clientIpAndPort, _newServerl
transferred |—> dataSize
]

IN
+ * The no-negotiation case of RFC 2347. No options were requested.
+ /\ DOMAIN _rrqg.options = {}

/\ packets' = packets \union { dataPacket }
/\ serverTransfers' = [
p \in DOMAIN serverTransfers \union {_clientIpAndPort} |—=>
@@ -163,6 +165,8 @@ _ServerSendOackOnRrq(_rrq, _clientIpAndPort, _newServerl
ServerRecvRRQthenSendOack: :
\E optionsSubset \in SUBSET DOMAIN _rrq.options,

blksize \in @..65464, timeout \in 1..255:
+ * RFC 2349: option negotiation
+ /\ DOMAIN _rrg.options /= {}
\x RFC 2349, Section 3.1: "If the server is willing to accept
* the blocksize option, it sends an Option Acknowledgment
* (OACK) to the client. The specified value must be less

FIX #1:

Apply RFC 2347 case only
when options is empty
Apply RFC 2349 case only
when options are non-empty

66

Spec vs. Code (8)

The client receives DATA and ERRORs

ERROR(8,)

v

The server keeps sending DATA P e

DATA(blk=1, 512B)

A

The client interprets DATA(1) as the
new session without negotiation

ACK(blk=1)

DATA(blk=2, 512B)

Last SUT operation does NOT match the spec - test diverged!

FIX #8: Save the protocol version

{72.20.0.12:1025 172.20.0.12:1031 172.20.0.10:1024

67

FIX #9: The client must send tsize = 0 in RRQ

FIX #10: The server should send default timeout if it’s not
specified in the options

FIX #11: The server may send invalid (e.g., outdated) packets

FIX #12: My understanding of TFTP timeouts was wrong

FIX #13: Handle ERROR packets

FIX #14: Receive only one OACK message

FIX #15: Use clientIP-clientPort-serverPort triplets

68

OACK({blksize': 27775})

I RRDPNIRN (2 :5:120) e Sty s A RSP RONTRI
i OACK({blksize': 27775})
PSSR U— 1 el o LT [N N,
” OACK({'blksize": 27775})
ERROR(8,) N
SO L s
” OACK({'blksize": 27775})

® Clock +1s (total: 5s)

OACK({'blksize': 27775})

D oMKz | A confusing run.

OACK({blksize': 27775})

) OACK((bsiz' 27775) Why is server ACKing on ACK?
ACK(blk=1) |
U . ACRBI) s ossissasansssmamssssassnase)

Last SUT operation does NOT match the spec - test diverged!

172.20.0.11:1024 172.20.0.12:1025 172.20.0.10:1024 172.20.0.10:1025 172.20.0.10:1026

69

Are all of our specifications broken?

The verification engineer’s mindset:

The specification usually overapproximates the implementation

Reachability: if the impl. reaches a state s, then the spec. reaches a(s)

Conformance testing (roughly):

If the spec. executes action A, the impl. must be able to execute A

If the impl. executes action A, the spec. must be able to execute A

Plenty of research in the 1990es

70

A few lessons from LLM-generated harnesses

1. Surprisingly, it works — not effortlessly though

2. Do not trust the generated harness — TODOs and bugs inside

3. Do not let an LLM define its own formats — it goes wild
4. Log yourself and define your log format — or, face wild regexes

5. Generate visualizations that suit your needs — it's amazing!

71

Time (seconds)

Produce 100 episodes, 100 steps each

Time Distribution Across Test Runs

g

=
o
i

20

JSON-RPC Client
TFTP Operations
Docker Operations
Clock Advancement
Other

Test Run

72

Improvements?

Docker restarts and time.sleep are slow (seconds)
Deterministic simulation instead?

Guided search = fuzzing + symbolic execution

73

run time : 7 days, 8 hrs, 4 min, 02 sec cycles done : 462

last new path : @ days, @ hrs, @ min, 00 sec total paths : 106828
last uniq crash : none seen yet uniq crashes : 0
last uniq hang : @ days, 1 hrs, 59 min, 43 sec uniq hangs : ©

be—

now processing : 150 / 0.1% load avg : 30.59 / 32 095.6
new cycle paths : 335 RAM + Swp : 83G + 0G / 125G 66.7
paths timed out : 78 / 0.1% restarts : ()

o
)
e

o]

now trying : xover-u 12 transitions| favored paths : 67258 (63.0%)
stage execs : 0@ shortened paths : 45987
total execs : 625K evicted paths : 17777
exec speed : 0.987/sec

: 14.7K 9K 30.1% 31 diameter : 31 levels :
: 14.1K .3K 36.8% 111 len stats : 22.1u 5.20
: 4.96K 2K 13.0% 21 scores : [10.0, 180.5]
: 7.87K 2K 20.6% 21 mean/std : 14.3u 13.90c
: 34.4K 2K 90.0% 28
: 2.66K 1K 7.0% own finds : 106828 imported :
: 27.6K 5K 71.8% 114

Prototype. Contact me to learn more

Testing with TLA"

1. Nagendra et. al. Model guided fuzzing of distributed systems (2025)

2. Cirstea, Kuppe, Merz, Loillier. Validating Traces of Distributed Systems
Against TLA+ Specifications (2024)

3. Chamayou et. al. Validating System Executions with the TLA+ Tools (2024)

4. Jordan Halterman. Verifiability Gap: Why We Need More From Our Specs
and How We Can Get It (2020)

5. Jessie Davis et al. eXtreme Modelling in Practice (2020)

6. Kupriyanov, Konnov. Model-based testing with TLA+ and Apalache (2020)

7. Pressler. Verifying Software Traces Against a Formal Specification with

TLA dTLC (2018
Fand TLC (2018) Except [6], all use TLC

75

Pros of our approach

Black-box testing: communication over the network, no instrumentation

Minimal mapping: define the labels of TESTER and SUT

Modular: test components in isolation, the rest is the spec

TLA" specification

~

&

-

-

Harness

—

-

~

J

76

Takeaways

Write your own symbolic search scripts!

Connect your spec with the code, as you like it
LLMs can help you, when it's too boring or too diverse
You know better what matters to your project

Put it in your CI

Easy to parallelize

77

[=] 4, [m]

L

[=]

Q&A

The spec and the harness:

[github.com/konnov/tftp-symbolic-testing |

e-mail: igor@konnov.phd telegram: igor_konnov_phd

78

* Compute the measure as the max of block numbers of all transfers.
; L. * @type: (<<Str, Int>> —> $transfer) => Int;
Select fitter transitions —— measure(t) ==
LET MaxS(S) == ApaFoldSet(LAMBDA x, y: Max(x, y), @, S) IN
MaxS({ t[ipPort].blockNum : ipPort \in DOMAIN t })

F"ter tests mﬂth Views * Use the number of transferred blocks as the measure for computing

* the fitness function. The rest of the view is used for filtering

* similar states.

* @type: << Int, <<Str, Int>> -> $absTransfer, <<Str, Int>> -> $absTransfer >>;

» MeasureView == <<
(1 + Measure(serverTransfers) + Measure(clientTransfers)) x 10,
AbsTransfer(t) == [p \in DOMAIN serverTransfers |-> AbsTransfer(serverTransfers[p]) 1,
[port |-> t.port, [p \in DOMAIN clientTransfers |-> AbsTransfer(clientTransfers[p])]

Kol W T1e i) "

tsize |-> Min(t.tsize, 1),

* abstract [0, 512), [512, 1024), [1024, 1536), ... o H +

blksize |-> t.blksize \div 512, ThIS IS pure TI'A ’

* interval abstraction [0, 10], [11, 255]

timeout |-> IF t.timeout <= 10 THEN 1@ ELSE 255, No tool extension needed
* keep exact blockNum

blockNum |-> t.blockNum,

* simply whether we are below or above the timeout threshold

timestamp |-> IF clock <= t.timestamp + t.timeout THEN -1 ELSE 1

ITF JSON Traces [apalache-mc.org/docs/adr/015adr-trace.html]

{ : -
ngmetat: { trace_json = {
“index": 1 “fmeta": {"id": 23},
} n " Hpn
A params": ["N"],
c};?‘:‘t):l::a?sfers t A wvars": ["pc”, "x"1, ApalaChe prOduceS ITF traces
[{ “loop": O, o
"gtup": | "states": [Trivial to parse:
'{'172.20.0.11", {
“#bigint": "1024" “dmetats {not: 0, see github.com/konnov/itf-py
} IINII: {"#biglnt": Il3ll}'
] " " "na "
}, pc": "idle",
{"blkSize"-{ "X": {u#bigintu: ||42u},
"gbigint": "512" h
}, {
b.l.;;'i(gli‘:t.'.:{..o.. "#meta": {"no": 1},
I):' . Ilpcll: Illockll’
g},?ﬁks{ by “x": {"#bigint": "43"},
Il#bigintll: Il69ll }’
}
"proto": "options_yes",]'
"timeout": { }

Il#bigintll H Illll
h 80

Type checker

apalache-mc.org/docs/tutorials/snowcat-tutorial.html

Damas & Milner type inference + row types (no inductive types)

Resolving type imprecision between function-like types

May require type annotations for records, tuples, functions, and sequences

Int
UNINTERPRETED
a->b

(a,b,c)=>d

Bool
Set(a)

<<a, b, c>>

Str
Seq(a)
{f1:a,f2:b,f3: c}

Tag1(a) | Tag2(b) | Tag3(c)

Translation to SMT

TLA* Model Checking Made Symbolic [O0OPSLA'19]

Mimic the semantics implemented by TLC — explicit model checker

Compute layout of data structures, constrain contents with SMT

Define operational semantics via reduction rules — for bounded data structures

Trade efficiency for expressivity

82

Static picture of TLA™ values and relations between them

Arena: SMT:

integer sort Int

/ \ Boolean sort Bool

C4 C3 = FALSE name, e.g., "abc", uninterpreted sort

1 2 finite set:
- a constant c of uninterpreted sort set-
c1=22 co=4 - propositional constants for members

In<c1 7C>,) In<cnac>

83

Arenas for sets: {{1,2},{2, 3} }

Ce : Set[Set[Int]]

Ve

Cy4 : Set[Int] Cs : Set[Int]
1) ohe 7 e
Cqi : Int Co : Int Csz : Int

SMT defines the contents, e.g., to get {{1}, {2} }:

N cq) N TN ey ca) AN 1Ny) N TNy c5)

84

Rewriting the set construction
{1,2} v {c1 ,2} ~» {a, o} —

Corresponding arena

(empty) ~» ci:Int ~» ci:Int c:int

C3

c3 : Set[Int]

ci:Int co:Int

85

(
(
(
(

declare-const C5 Int)
assert (= C5 1))
declare-const C6 Int)
assert (= C6 2))

declare-sort Cell_Si 0)
declare-const C7 Cell_Si)
declare-const in_i5 _Si7 Bool)
declare-const in_i6_Si7 Bool)
assertin_i5_Si7)

assert in_i6_Si7)

AN N N N N N

86

87

