
Hands-on symbolic search
& test generation with Apalache

igor@konnov.phd

NVidia FM Week — Online, Nov 20, 2025

2

2024-2025Independent security and formal methods researcher

2019-2023

2011-2019

Principal research scientist at Informal Systems (Web3 – blockchains)

Verifying consensus protocols and smart contracts

Improving Apalache, working on new tools

Leading development of Apalache and Quint

Postdoc, assistant professor & permanent researcher at TU Wien & Inria

󰎈 Vienna, Austria

󰎈 󰏃

Igor Konnov

This talk

3

1. A bit of history ☕

2. Symbolic search with Apalache 󰷺

3. TFTP Protocol in TLA+ ⚙🔩

4. Testing loop for tftpd-hpa with Apalache and Claude 🦾

[apalache-mc.org]

[github.com/apalache-mc/apalache]

2016 2018 2019 2020 2021 2022 20242023

5

20252017

2016 2018 2019 2020 2021 2022 20242023

6

2025

Epoch 1

1. SMT transpiler
2. Type checker
3. Bounded model checker

Epoch 2

1. Random. symbolic execution
2. Data generators

Epoch 3

1. Parallelization
2. DIY search

2017

what academia need

what engineers need

what customers need

Philip Offtermatt Rodrigo OtoniAndrey Kupriyanov

Thanh-Hai Tran Marijana Lazić Josef Widder

8

Tendermint BFT consensus (2020)

Tendermint light client (2020)

ChonkyBFT consensus (2024-2025)

Governance Protocol (2024)

🌒 L2 Governance Protocol (2025)

Accountability in Ethereum 3-slot
finality (2024)

📖 Ben-Or’s consensus (2024)

📝 TetraBFT consensus (2024)

Offshoot projects

9

since 2021

[quint-lang.org] [github.com/informalsystems/atomkraft]

Symbolic search with
Apalache

10

Example: Circular buffer

11

0 0 33 5 8 42 10 0 0 0

head tail

Example: Circular buffer

12

0 0 33 5 8 42 10 0 0 0

head tailhead

1. GET → 33, head’ = (head + 1) % N

Example: Circular buffer

13

0 0 33 5 8 42 10 55 0 0

head tailhead

1. GET → 33, head’ = (head + 1) % N

2. PUT(55), tail’ = (tail + 1) % N

tail

14

15

16

How do we find this violation?

17

Explicit-state model checker TLC:

over 40 min on 30 CPU cores

over 3 billion states

400G disk space ⇒ “No space left on device”

Can we analyze it without
enumerating all states?

Instance MC10u8_BuggyCircularBuffer:

- BUFFER_SIZE = 10

- BUFFER_ELEMS = 0..255

Epoch #1: Bounded model checking (symbolic)

18

Explore all paths up to k steps, e.g., 20

Kind of symbolic
breadth-first search

put

put

get

Find schedule Find payloads

count= 1

count= 0

count= 2

count= 1

19

Apalache is fast?

20

Bounded model checking with Apalache

 $ apalache-mc check

3 sec to invariant violation (11 steps)

Explicit-state model checker TLC:

over 40 min on 30 CPU cores

over 3 billion states

400G disk space ⇒ “No space left on device”

(we could do trivial abstraction)

21

General perception: It is slow

22

Bounded model checking
for more steps

3 sec

82 sec

25 min

23

In 2022-2023, after plenty of discussions with engineers:

I wrote a randomized simulator in TypeScript à la PBT

…and everybody was: “It’s really fast!”

Some of my peers use exclusively this simulator

$ quint run --main=mc10u8_buggy_circular_buffer --invariant=safeInv \
 --max-steps=200 buggy_circular_buffer.qnt
…
[violation] Found an issue (16ms at 63 traces/second).

Weird turn

Random search?

24

TLC -simulate -depth 100:

Finds a counterexample in 0.25 sec!

Needs to explore only 174K states

Under 1 sec for BUFFER_SIZE in { 20, 30, 100 }

By fixing the search procedure,
we are missing easy bugs!

25

By fixing the search procedure,
we are missing easy bugs!

26

put

put

get

Find schedule Find payloads

42

22

42

Bounded model checking

Epoch #2: Randomized symbolic execution

27

Bounded model checking

put

put

get

Find schedule Find payloads

42

22

42

put

put

get

Generate
schedule

Randomized symbolic execution

Find payloads

42

22

42

apalache-mc simulate

28

✅ Finds bugs faster than bounded model checker

✅ Easier for Z3, as it is mostly doing propagation

✅ Trivially parallelizable

❌ Hard to customize

Epoch #3: DIY search

29

✅ Write your own search scripts in any language

✅ Prioritize schedules as you like

✅ Evaluate them with Apalache and Z3

✅ Query for traces and enumerate models

TFTP
Trivial File Transfer Protocol

30

TFTP

31

Simple protocol to send and receive files over UDP since 1992

Network booting, transferring firmware to network devices

RFCs 1350, 2347-2349, 1123

32

Happy paths are easy only read requests in this talk

RFC 1350 RFC 2347

TFTP challenges for verification tools

33

1. UDP: packet loss, reordering, retransmission

2. Large parameter space: 64K of ports, block sizes, file sizes

3. Retransmission timeouts

4. Some operations are input/output

5. Some are one-sided (errors, termination)

TFTP is only called trivial

Specification in TLA+

34

Initial spec

35

Client: 5 actions

Server: 5 actions

Environment: 1 action

Size: about 800 LOC

Example: ClientSendRRQ

36

Make sure the spec does something

37

$ apalache-mc check \
 --inv=RecvThreeDataBlocksEx MC2_tftp.tla
…
State 7: state invariant 0 violated.
Total time: 24.813 sec

Initial specification effort

38

1. Relatively straightforward with my experience

2. Most of my time went into switching between RFCs

3. Generating repetitive type definitions with LLMs

4. Playing with falsy invariants to produce examples

13 hours ≈ 2 days[github.com/konnov/tftp-symbolic-testing]

Question #1 from every engineer:

How does it connect to the
implementation?

39

Tester-implementation game

40

Player 1 (tester) Player 2 (SUT)

1. Guess next transition with inputs

2. Execute the transition. Respond.

3. Evaluate the response. Repeat 1.

Multishot
input-output conformance testing

Challenges

41

1. Completely random generation is really low quality

2. Produce high-quality inputs

3. Develop the harness and testing infrastructure

42

Give me a framework
in Golang, Rust, etc.

I don’t want to learn
TLA+ and Python

I’m coding

Sure, I will help you to
write the test harness!

(You have to fix my
bugs later. He-he)

1. Completely random generation is really low quality

2. Produce high-quality inputs

3. Develop the harness and testing infrastructure

New testing loop with Apalache

43

Harness (Python)Apalache &
TLA+ Spec

(1) loadSpec

(2) assumeTransition; nextStep

(3) query
(4) Send command

(5) Get response

(7) assumeState

for n steps

No solution? => Report error

(6) assumeTransition; nextStep

44

Debugging the harness

45

1. Lots of debugging

2. Explaining Claude how to handle packets

3. Analyzing logs

4. Fixing bugs in the generated harness code

5. Claude lost in abstractions (e.g., clients in docker vs. clients in spec)

≈ 1 week
≈ 200 premium requests (Copilot)

How it looks like

46

python_harness.log tftpd_server.log

Generating sequence diagrams

47

Trial and fix. A lot!

Spec vs. Code (1)

48

RFC 2347: “...the server should simply omit the option from the OACK,
respond with an alternate value, or send an ERROR packet, with error
code 8, to terminate the transfer.”

The server sends ERROR from the control port (69). Nope.

Harness vs. Code (2)

49

Fix #2: Give the client a chance to receive
DATA after timeout (UDP is hard!)

The client has not received DATA(1) yet
and sends ACK(0) again

The harness expects a timeout

Spec vs. Code (3)

50

Our server spec did not

send duplicate packets!

UDP is hard 🥹

51

FIX #3:

Let the server re-send DATA

Spec vs. Code (4)

52

The server in the spec had not
received ERROR so far

Per RFC 1350, the server does
not have to reply on ERROR!

There is input, but no output!

Oops. Our generated harness was
supposed to work this way

How do we debug this divergence?

53

$ jless test-results/run_0002/divergence_trace.itf.json

The spec still has the transfer
172.20.0.11:1024 and 172.20.0.10:1024

54

RFC 2347: “In order to create a connection, each end of the
connection chooses a TID for itself, to be used for the duration
of that connection. The TID's chosen for a connection should
be randomly chosen, so that the probability that the same
number is chosen twice in immediate succession is very low.”

We have hit the case of low probability?

Revised testing loop with Apalache

55

Harness
(Python)

TFTP server
(tftpd-hpa)Apalache

for n steps

Communication as
before

and

tftp_client
(Python)

UDP packet 1

UDP packet 2

UDP packet 3

UDP packet 4

UDP packet 5

Send command 1

Get responses

Send command 2

Get responsesResponse set:

{ ⏹ ⏹ ⏹
}

{ ⏹ ⏹
⏹ }

{ }

Does this work?

56

57

ERROR is still blocking the spec

58

FIX #5: the server may reuse
the port if there was an ERROR

Easy in TLA+, hard in stricter
specification languages!

Spec vs. Code (5)

59

Duplicate and outdated packets!

Spec vs. Code (5)

60

Duplicate and outdated packets!

In TLA+ theory, this is just a
stuttering step

Spec vs. Code (5)

61

The client sends ACK
on the last packet (transfer finished)

The server recycles the port immediately

62

RFC 2347: “The end of a transfer is marked by a DATA packet that contains
between 0 and 511 bytes of data (i.e., Datagram length < 516). This packet
is acknowledged by an ACK packet like all other DATA packets. The host
acknowledging the final DATA packet may terminate its side of the
connection on sending the final ACK. On the other hand, dallying is
encouraged. This means that the host sending the final ACK will wait for a
while before terminating in order to retransmit the final ACK if it has been
lost. The acknowledger will know that the ACK has been lost if it receives
the final DATA packet again. The host sending the last DATA must
retransmit it until the packet is acknowledged or the sending host times out.
If the response is an ACK, the transmission was completed successfully. If
the sender of the data times out and is not prepared to retransmit any
more, the transfer may still have been completed successfully, after which
the acknowledger or network may have experienced a problem. It is also
possible in this case that the transfer was unsuccessful. In any case, the
connection has been closed.”

63

FIX #6: reuse the ports from
completed transfers

Test traces get longer

64

Ran 100 test runs 100 steps each: 37 of them diverge

Hard to analyze these traces by hand LLM hallucinated too much in
identifying the root cause

Spec vs. Code (7)

65

The server starts data exchange

In the middle, the server spec
interprets an earlier RRQ as
no-negotiation case, and sends
DATA(1) again!

66

FIX #7:
1. Apply RFC 2347 case only

when options is empty
2. Apply RFC 2349 case only

when options are non-empty

Spec vs. Code (8)

67

The client receives DATA and ERRORs

The server keeps sending DATA

The client interprets DATA(1) as the
new session without negotiation

FIX #8: Save the protocol version

68

FIX #9: The client must send tsize = 0 in RRQ

FIX #10: The server should send default timeout if it’s not
specified in the options

FIX #11: The server may send invalid (e.g., outdated) packets

FIX #12: My understanding of TFTP timeouts was wrong

FIX #13: Handle ERROR packets

FIX #14: Receive only one OACK message

FIX #15: Use clientIP-clientPort-serverPort triplets

69

A confusing run.
Why is server ACKing on ACK?

Are all of our specifications broken?

70

The verification engineer’s mindset:

The specification usually overapproximates the implementation

Reachability: if the impl. reaches a state s, then the spec. reaches ɑ(s)

Conformance testing (roughly):

If the spec. executes action A, the impl. must be able to execute A

If the impl. executes action A, the spec. must be able to execute A

Plenty of research in the 1990es

A few lessons from LLM-generated harnesses

71

1. Surprisingly, it works – not effortlessly though

2. Do not trust the generated harness – TODOs and bugs inside

3. Do not let an LLM define its own formats – it goes wild

4. Log yourself and define your log format – or, face wild regexes

5. Generate visualizations that suit your needs – it’s amazing!

72

Produce 100 episodes, 100 steps each

$./harness.py --docker --steps=100 --tests=100

Improvements?

73

Docker restarts and time.sleep are slow (seconds)

Deterministic simulation instead?

Guided search = fuzzing + symbolic execution

74

Prototype. Contact me to learn more

Testing with TLA+

75

1. Nagendra et. al. Model guided fuzzing of distributed systems (2025)
2. Cirstea, Kuppe, Merz, Loillier. Validating Traces of Distributed Systems

Against TLA+ Specifications (2024)
3. Chamayou et. al. Validating System Executions with the TLA+ Tools (2024)
4. Jordan Halterman. Verifiability Gap: Why We Need More From Our Specs

and How We Can Get It (2020)
5. Jessie Davis et al. eXtreme Modelling in Practice (2020)
6. Kupriyanov, Konnov. Model-based testing with TLA+ and Apalache (2020)
7. Pressler. Verifying Software Traces Against a Formal Specification with

TLA+ and TLC (2018)
Except [6], all use TLC

Pros of our approach

76

Black-box testing: communication over the network, no instrumentation

Minimal mapping: define the labels of TESTER and SUT

Modular: test components in isolation, the rest is the spec

SUT
Harness

TLA+ specification

Takeaways

77

1. Write your own symbolic search scripts!

2. Connect your spec with the code, as you like it

3. LLMs can help you, when it’s too boring or too diverse

4. You know better what matters to your project

5. Put it in your CI

6. Easy to parallelize

Q & A

78

e-mail: igor@konnov.phd telegram: igor_konnov_phd

The spec and the harness:

[github.com/konnov/tftp-symbolic-testing]

79

Filter tests with views

Select fitter transitions

This is pure TLA+.
No tool extension needed

ITF JSON Traces

80

[apalache-mc.org/docs/adr/015adr-trace.html]

Apalache produces ITF traces

Trivial to parse:

see github.com/konnov/itf-py

Type checker

Damas & Milner type inference + row types (no inductive types)

Resolving type imprecision between function-like types

May require type annotations for records, tuples, functions, and sequences

Int Bool Str

UNINTERPRETED Set(a) Seq(a)

a -> b <<a, b, c>> { f1: a, f2: b, f3: c }

(a, b, c) => d Tag1(a) | Tag2(b) | Tag3(c)

apalache-mc.org/docs/tutorials/snowcat-tutorial.html

Translation to SMT

Mimic the semantics implemented by TLC – explicit model checker

Compute layout of data structures, constrain contents with SMT

Define operational semantics via reduction rules – for bounded data structures

Trade efficiency for expressivity

TLA+ Model Checking Made Symbolic [OOPSLA’19]

82

83

84

85

86

(declare-const C5 Int)
(assert (= C5 1))
(declare-const C6 Int)
(assert (= C6 2))

(declare-sort Cell_Si 0)
(declare-const C7 Cell_Si)
(declare-const in_i5_Si7 Bool)
(declare-const in_i6_Si7 Bool)
(assert in_i5_Si7)
(assert in_i6_Si7)

87

