
HABILITATIONSSCHRIFT

Techniques and Tools for Automated Verification of

Fault-tolerant and Parameterized Distributed Systems

ausgeführt zum Zwecke der Erlangung der Lehrbefugnis
für Informatik

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Igor Konnov, PhD

im Dezember 2018

Habilitation thesis

Techniques and Tools for Automated Verification of

Fault-tolerant and Parameterized Distributed Systems

submitted to the

Faculty of Informatics of TU Wien

in December 2018

by

Igor Konnov, PhD

Abstract

Failures of distributed systems sometimes have drastic effects. Classical
examples are networked embedded systems in flight control and automotive
industry. Recent examples are cloud systems, which contain thousands of servers
built of fault-prone commodity hardware. Reasoning about distributed systems
of such scale is inherently hard, and human intuition is often defeated by the
complexity of the task. A rigorous approach to verification of today’s distributed
systems has to address two questions: (i) How to verify a distributed system
designed for a faulty environment, and (ii) How to verify a distributed system
of real scale, e.g., with thousand components.

These questions are notoriously difficult. Hence, in state-of-the-art system
development, the engineer’s trust in fault-tolerant distributed systems is sup-
ported by two kinds of arguments (in addition to thorough system testing).
First, to reason about safety and liveness of basic distributed algorithms, dis-
tributed algorithms designers write pencil & paper mathematical proofs that
apply to all numbers of processes and faults. Second, to debug designs of dis-
tributed systems, engineers write high-level specifications and run model check-
ers on small instances, which comprise three or four processes and allow one
fault to happen. The problem with this approach is that the actual distributed
systems run hundreds of processes, and thus the classical model checking tools
would miss the bugs that occur in the systems running these large numbers of
processes. To guarantee reliability of such systems, engineers need verification
tools that are both tailored to the mechanisms found in fault-tolerant distributed
algorithms and scale to the realistic system sizes, or all system sizes.

The publications in this habilitation thesis present novel techniques for pa-
rameterized model checking of fault-tolerant distributed algorithms. We were
the first to introduce techniques and tools for model checking of threshold-
guarded algorithms such as reliable broadcast, non-blocking atomic commit,
and one-step consensus. Prominently, our verification results have two features
crucial for the algorithm designers: we have verified both safety and liveness,
and our results hold for all numbers of processes and faults. Moreover, as we
have recently shown, these results can be applied also to automated synthesis
of fault-tolerant distributed algorithms.

This habilitation thesis consists of two journal articles and six peer-reviewed
conference papers. Our new techniques contribute to model checking and pa-
rameterized verification by employing and extending such methods as abstrac-
tion, reduction, acceleration, bounded model checking, satisfiability modulo theo-
ries, counterexample-guided abstraction refinement, and counterexample-guided
inductive synthesis.

i

Acknowledgments

First of all, I would like to thank my teachers and senior colleagues from
whom I have learnt the most: Vladimir Zakharov, Helmut Veith, and Josef
Widder. Vladimir Zakharov introduced me to the amazing world of logic and
computer-aided verification and convinced me that there are plenty of things
to discover. Helmut Veith taught me that research should also be fun. Helmut
always wanted to explore the fields “where no one has gone before” — it was
Helmut who initiated and supported the research that is presented in this thesis.
Josef Widder taught me a lot about distributed algorithms, what they are and,
more importantly, what they are not. I thank Josef for our endless scientific
arguments that led us to this new perspective on verification of fault-tolerant
distributed algorithms.

This work would not be possible without the vibrant atmosphere of the
Forsyte group (TU Wien), which was nurtured by Helmut Veith, Georg Weis-
senbacher, and Laura Kovacs. Without doubt, the work presented in this cumu-
lative habilitation owes to the contributions by my co-authors: Helmut Veith,
Josef Widder, Marijana Lazić, Annu Gmeiner, Qiang Wang, Tomer Kotek, Si-
mon Bliudze, Francesco Spegni, Roderick Bloem, Ulrich Schmid, and Joseph
Sifakis. I am sure that this work also benefited from our lunch conversations
with Andreas Holzer, Florian Zuleger, Moritz Sinn, Georg Weissenbacher, Swen
Jacobs, Ayrat Khalimov, Ilina Stoilkovska, and Sasha Rubin. It goes with-
out saying that these fruitful discussions were often accompanied by Wiener
Schnitzel in Wiazhaus!

The presented research required generous financial support. This was pro-
vided by the Austrian Science Fund (FWF) through the National Research Net-
work RiSE (S11403) and the Vienna Science and Technology Fund (WWTF)
through grants APALACHE (ICT15-103) and PROSEED (ICT12-059). In Aus-
tria I found that funding agencies can be efficient when they minimize the bu-
reaucratic burden on the researchers. The computational results presented in
Part III have been achieved using the Vienna Scientific Cluster (VSC-3).

I thank Anna Prianichnikova and Helmut Veith, who shared their wisdom
about Austria and the world and were always there to help. To my deep regret,
Helmut would not be able to read these lines.

Finally, I owe a debt of gratitude to my wife Marina for moving with me
to Vienna — and later to Nancy, while she already had a good job, for learning
her third foreign language (German) in less than a year, and for patiently going
through all the other challenges. And thanks to our daughter Sofija for waiting
for me, while I was travelling and when finishing this thesis.

Nancy, France, October 2018

ii

Contents

Introduction 1

Overview of the Results 9

I Modeling of Fault-Tolerant Distributed Algorithms and
Model Checking by Abstraction 39

1 Towards modeling and model checking fault-tolerant distributed algo-
rithms 41

2 Accuracy of Message Counting Abstraction in Fault-Tolerant Dis-
tributed Algorithms 61

3 Parameterized model checking of fault-tolerant distributed algorithms
by abstraction 83

II Parameterized and Bounded Model Checking of Threshold-
Guarded Distributed Algorithms with SMT 93

4 On the completeness of bounded model checking for threshold-based
distributed algorithms: Reachability 95

5 Para2: parameterized path reduction, acceleration, and SMT for reach-
ability in threshold-guarded distributed algorithms 111

6 A short counterexample property for safety and liveness verification of
fault-tolerant distributed algorithms 151

III Parameterized Synthesis of Threshold-Guarded Dis-
tributed Algorithms 169

7 Synthesis of Distributed Algorithms with Parameterized Threshold
Guards 171

iii

IV Parameterized Extension of Behavior-Interaction-Priority
Framework 193

8 Parameterized Systems in BIP: Design and Model Checking 195

V Supplementary Documents 213

9 Curriculum Vitae 215

10 List of Publications 221

iv

Introduction

Distributed systems are now everywhere: in airplanes, cars, phones, houses, and

cloud services. All these systems consist of many interacting components, some

of them can fail. One infamous source of failures are software bugs — logical

errors introduced when writing code. Another source are the failures that are

caused not by the programmer’s oversight, but by the environment itself: power

outages, disk failures, memory corruption, or network misconfiguration. Our

personal computers and handheld devices have indeed become quite reliable —

compare to the earliest computers like ENIAC that had a tube failing once

in two days [Randall 2006] — and thus it is tempting to believe that building

a distributed system out of these components should be easy. Unfortunately,

this is not true. Failures occur every day in large distributed systems [Bailis

and Kingsbury 2014] as well as in supercomputers [Geist 2016]. When a failure

uncontrollably propagates throughout a distributed system, it may freeze the

whole system. Designing fault-tolerant distributed systems has been a subject

of basic research in distributed computing since the late 1970s [Lynch 1996,

Attiya and Welch 2004]. New distributed algorithms are presented every year

at PODC and DISC — premier conferences on distributed computing.

Fault-tolerance is achieved by replication. To mitigate at most f (Byzan-

tine) faults, one builds a system S(n, f) of n > 3f replicas, out of which at least

the n− f correct replicas have to agree on the result of computation. Lamport,

Shostak, and Pease introduced this as the consensus problem and presented first

consensus algorithms for solving it [Pease et al. 1980]. The distributed comput-

ing literature comprises numerous consensus algorithms, to name a few: the

famous Paxos by Lamport [1998], Practical Byzantine Fault Tolerance by Cas-

tro et al. [1999], and Raft by Ongaro and Ousterhout [2014]. Consensus algo-

rithms lie at the heart of the replicated state machine approach [Schneider 1990,

Lamport 1978, Lamport et al. 2010] and are run in distributed databases [Cor-

1

1 input : vp
2 broadcast 〈VOTE, vp〉 to a l l processors ;
3 wait u n t i l n− t VOTE messages have been received ;
4 i f more than n+3t

2 VOTE messages contain the same value v
5 then DECIDE(v) ;
6 i f more than n−t

2 VOTE messages contain the same value v ,
7 and there is only one such value v
8 then vp ← v ;
9 Under ly ing−Consensus (vp) ;

Figure 1: BOSCO: Byzantine one-step consensus by Song and van Renesse
[2008]

bett et al. 2013], crypto currencies and distributed ledgers [Garay et al. 2015,

Abraham et al. 2017], and cloud systems [Chandra et al. 2007].

An example of a fault-tolerant distributed algorithm. As a concrete example,

consider the pseudo-code in Figure 1, which describes Byzantine one-step con-

sensus (BOSCO) by Song and van Renesse [2008]. This algorithm works under

the following assumptions:

(a) The distributed system comprises n processes, where n is a parameter. Ev-

ery non-faulty process runs the code of the algorithm.

(b) The environment is asynchronous: There are no bounds on relative proces-

sor speeds as well as times of message delivery. (One assumes, however, that

the non-faulty processes are scheduled infinitely often and that every mes-

sage sent by a non-faulty process is eventually delivered to every non-faulty

process.)

(c) At most t < n/3 processes may be subject to Byzantine faults, that is,

behave in arbitrary way. For instance, they can stop or send arbitrary

messages to the other processes.

(d) Each process p starts with an initial value vp, e.g., a natural number.

(e) The processes broadcast their values to all other processes and count how

many messages they have received.

(f) The processes have to eventually decide on exactly one value from the set

{v1, . . . , vn}.

2

As BOSCO runs in the asynchronous environment, there is no guarantee

that every process would eventually decide; otherwise, it would have violated

the famous impossibility result by Fischer et al. [1985]. Instead, BOSCO quickly

solves consensus in the “good cases”: (1) when n > 7t, or (2) when n > 5t and

there are no faults. In the other cases — when the processes cannot quickly

decide — the processes fall back to a general consensus algorithm such as Paxos,

which is called “Underlying-Consensus” in the pseudo-code. The underlying

consensus algorithm should impose additional requirements on the environment,

in order to guarantee termination.

Pseudocode and paper & pencil correctness proofs. It is standard in the re-

search literature to write algorithms in pseudo code. By doing so, algorithm

designers focus on algorithmic aspects and omit “book-keeping details” such as:

receiving messages, expressing faults, or encoding communication constraints.

Although pseudo code may appear simple, its specification in a formal language

like tla+ [Lamport 2002] or its actual implementation are complex. For in-

stance, the size of Raft code varies dramatically: the pseudo code is just 100

lines, the tla+ specification is 433 lines, and the implementation in C++ is 31104

lines [Ongaro 2014].

It is common in the distributed computing literature to write mathematical

proofs, in order to convince the peers that a new algorithm is correct. These

proofs are usually sophisticated, as they require one to reason about concurrency,

faults, and temporal behavior of the algorithm. Not surprisingly, the algorithms

and their proofs may contain bugs. For instance, safety and liveness bugs were

found in the earlier versions of Raft. While it is customary to catch these bugs

by peer review, this process is error-prone and requires ingenuity. Thus, there

is a need for automatic tools that would help algorithm designers in ensuring

that their new algorithms are correct.

The techniques and tools of this habilitation thesis contribute to automatic

reasoning about correctness of fault-tolerant distributed algorithms.

Formal specifications and interactive proofs. The need for formal specifica-

tions and rigorous correctness proofs of distributed algorithms was understood

as early as in the 80ies, when Leslie Lamport and Nancy Lynch introduced their

frameworks called Temporal Logic of Actions (TLA) [Lamport 1980; 2002] and

3

IO Automata [Lynch and Stark 1989, Lynch 1996], respectively. These frame-

works were devised for manually-written proofs and later enhanced with proof

assistants: PVS, Isabelle, and TLAPS. (They were also extended with model

checkers, discussed below.) The strong point of TLA and IO automata is that,

by design, they are not limited to a specific class of algorithms. But this free-

dom comes with a price tag: the user has to find invariants on the system state

and prove that the distributed algorithm preserves the invariants. This is hard,

as distributed algorithms — especially fault-tolerant algorithms — demonstrate

high degree of concurrency and non-determinism.

Ironfleet [Hawblitzel et al. 2015] and Verdi [Wilcox et al. 2015] are two recent

methodologies that encompass correctness proofs of fault-tolerant protocols and

their implementations. In Ironfleet, state machines are specified in Dafny — an

imperative, sequential language for functional verification with Z3 [Leino 2010,

De Moura and Bjørner 2008]. The authors propose TLA-like refinement [Lam-

port 2002] to prove that a distributed protocol satisfies (i.e., refines) its high-level

specification, and the implementation refines the protocol. In Verdi, the user

specifies a distributed protocol and its implementation under assumptions of

the perfect environment — no message losses, no process crashes. Verdi extends

this system with fault-tolerance by applying transformation rules, whose cor-

rectness is proven with Coq [Bertot and Castéran 2004]. In both methods, the

user invests substantial efforts in proof writing that is estimated in lines of code

required to write: (a) the specification, (b) the implementation, and (c) the ac-

tual proofs. For the Ironfleet case studies, these figures are: (a) 1400, (b) 5114,

and (c) 39253. For the Verdi case studies, the figures are: (a) 148, (b) 220, and

(c) 2364.

PSync is a domain-specific language by Dragoi et al. [2016] that builds upon

the Heard-Of model by Charron-Bost and Schiper [2009]. This language comes

with a runtime environment and thus allows the algorithm designers to exe-

cute their algorithms. Moreover, the algorithms in PSync can be expressed in

the logic called CL and verified with the semi-decision procedure that was in-

troduced by Dragoi et al. [2014]. As usual, the user has to provide detailed

enough inductive invariants and ranking functions, in order for the verification

procedure to automatically prove the safety and liveness properties.

Recently, Padon et al. [2017] proposed a verification methodology based

on effectively-propositional logic (EPR). In this methodology, the user has to

specify the distributed algorithm and the invariant candidate in first-order un-

4

interpreted logic. In case this specification fits into the fragment of EPR, the

verification tool verifies the invariance in a completely automatic way. More-

over, EPR enjoys a finite model property: If a formula in EPR is satisfiable,

then there is a finite structure that serves as a model of the formula. Hence, the

tool produces finite counterexamples, which reflect the nature of the analyzed

systems. The crux of the approach is to fit the specification in EPR. This has to

be done by the user, who has to extend the specification (and the invariant) with

so-called derived relations. The purpose of these relations is to break cycles in

the quantifier alternation graph, which prevent the corresponding formula from

being in EPR. Padon et al. [2017] applied their methodology and the deductive

verification tool IVy [McMillan 2016] to verify the invariants of several variations

of Paxos.

Model checking. Automatic reasoning about non-deterministic and concurrent

systems that belong to a specific application domain is a stronghold of model

checking. Originally formulated in the 1980s by Clarke and Emerson [1981]

and Queille and Sifakis [1982] as a graph traversal algorithm for proving that a

finite-state machine M satisfies a temporal formula ϕ, model checking has been

continuously evolving, e.g., see “Handbook of Model Checking” by Clarke et al.

[2018]. For decades, research in model checking has been focused on combina-

torial explosion that is caused — in different forms — by non-determinism,

concurrency, and huge state spaces of state machines. Partial remedies to

this problem are offered by the revolutionary concepts such as binary deci-

sion diagrams [Burch et al. 1990] and satisfiability solvers [Biere et al. 1999,

Bradley 2012], partial order reduction [Godefroid 1990, Valmari 1991, Peled

1993], predicate abstraction [Graf and Säıdi 1997], and abstraction refinement

using satisfiability-modulo-theory solvers [Clarke et al. 2003, Ball et al. 2011].

Despite critical role of fault-tolerant distributed algorithms, before our work,

only a few techniques were developed for this domain. In a nutshell, an efficient

model checker for fault-tolerant distributed algorithms has to address the fol-

lowing key problems:

1. General-purpose model checkers for distributed algorithms fall back to

state enumeration, e.g., Spin [Holzmann 2003] and TLC [Yu et al. 1999],

which suffers from state explosion.

2. Software model checking tools work best on sequential programs, which

5

have limited degree of non-determinism and no concurrency. That is, they

cannot be directly applied to fault-tolerant distributed algorithms.

3. Many distributed algorithms, including consensus algorithms, are param-

eterized in the number of processes and faults and thus require parame-

terized model checking, e.g., proving ∀n, f : n > 3f. S(n, f) |= ϕ.

The problem of parameterized model checking is particularly hard. In

fact, for many computational models, it is undecidable. In our recent sur-

vey, we reviewed state-of-the-art proofs and techniques for parameterized model

checking [Bloem et al. 2015]. Interestingly, these techniques do not apply to

fault-tolerant distributed algorithms, as they were developed for other domains:

token-passing systems, (hardware-like) broadcast systems, centralized systems,

cache coherency protocols, etc.

The techniques collected in this cumulative habilitation thesis rendered possible

parameterized model checking of fault-tolerant distributed algorithms.

Related work. Classical model checkers such as Spin by Holzmann [2003] and

TLC by Yu et al. [1999] enumerate reachable states of the state machine that

specifies a distributed algorithm, or, more often, its abstraction. Such an ab-

straction is usually constructed manually by the verification expert with respect

to the properties under analysis. These tools can verify distributed algorithms

for a small number of processes, e.g., when run on a 8GB machine, Spin can

verify Dolev-Klawe-Rodeh leader election in rings that contain up to eight pro-

cesses [Attiya and Welch 2004][Ch. 3]. Similarly, Spin can verify Peterson’s mu-

tual exclusion for systems consisting of up to five processes [Lynch 1996][p. 284].

Owing to combinatorial explosion, state enumeration tools are able to check

transition systems that have up to about a billion of states (depending on the

problem and available memory).

Several consensus and agreement algorithms were verified with model check-

ing for a fixed number of processes. Tsuchiya and Schiper [2011], Noguchi et al.

[2012] used NuSMV and Spin to verify the LastVoting algorithm by Charron-

Bost and Schiper [2009] and two consensus algorithms with failure detectors

by Chandra and Toueg [1996], Mostéfaoui and Raynal [1999]. Delzanno et al.

[2014] introduced a sophisticated encoding of Lamport’s Synod algorithm [Lam-

port 2001] in Promela and checked its properties with Spin for systems of up

6

to six processes. They further proved manually that the properties hold in the

parameterized case as well.

Besides the results presented in this thesis, there are only a handful of results

on parameterized model checking of fault-tolerant distributed algorithms, that

is, proving correctness for an unbounded number of processes n (and in some

cases, for all possible faults f < n/3). Fisman et al. [2008] showed how to encode

faults in the framework of regular model checking and manually reasoned about

a broadcast algorithm for crash faults. Alberti et al. [2012] encoded synchronous

broadcast algorithms in the theory of arrays and applied fix point computations

to check these algorithms, though they could not handle arithmetic conditions

such as f < n/3. Alberti et al. [2016] also considered SMT-based model checking

of counter systems, following up our work [Konnov et al. 2015].

Kwiatkowska et al. [2001], Kwiatkowska and Norman [2002] verified several

randomized distributed algorithms, including agreement and consensus algo-

rithms. The almost-sure termination arguments were done with the probabilis-

tic model checker PRISM [Hinton et al. 2006], for systems of 10–20 processes.

They also used the Cadence SMV proof assistant to show safety of the non-

randomized behavior of the distributed algorithms [Kwiatkowska et al. 2001],

for a parameterized number of processes.

Marić et al. [2017] investigated consensus algorithms in a version of the

“Heard-of” model by Charron-Bost and Schiper [2009], in which processes exe-

cute in rounds, but not necessarily in lock-step. They have shown that consensus

algorithms in this model have a cut-off property: It is necessary and sufficient

to verify these algorithms up to a precomputed number of processes and faults.

(The cut-off property has been proven for the three properties of consensus, that

is, agreement, validity, and termination.)

Recently, Aminof et al. [2018] introduced abstraction techniques for parame-

terized model checking of fault-tolerant distributed algorithms that work in the

synchronous model of computation.

7

8

Overview of the Results

This cumulative habilitation thesis is organized in four parts:

Part I: Modeling of Fault-Tolerant Distributed Algorithms and Model Check-

ing by Abstraction. We transfer the classical model checking techniques to

fault-tolerant distributed algorithms. To this end, we model fault-tolerant dis-

tributed algorithms as systems of processes in Promela and check these models

with Spin for small numbers of processes and faults. We investigate soundness of

this modeling under two different assumptions: (1) every message is eventually

delivered, and (2) every message is delivered in a fixed time interval. Finally, we

define parametric interval abstraction on message counters and process counters,

which renders possible parameterized model checking of reliable broadcast.

This part includes three papers presented at: SPIN [John et al. 2013b],

FMCAD [John et al. 2013c], and VMCAI [Konnov et al. 2017d]. The results

were also reported as a brief announcement at PODC [John et al. 2013a] and a

tutorial at SFM [Gmeiner et al. 2014], not included in this thesis.

Part II: Parameterized and Bounded Model Checking of Threshold-Guarded Dis-

tributed Algorithms with SMT. We introduce a radically new approach to pa-

rameterized verification of fault-tolerant distributed algorithms that count mes-

sages. Owing to problems with scalability of the techniques introduced in Part I,

we introduce the new model of threshold automata and consider counter systems

of threshold automata with a specific form of acceleration. For such counter sys-

tems we show that they have bounded diameters, which enables verification of

the abstract systems from Part I with SAT-based bounded model checking.

We improve this result by showing that for reachability properties, it is

necessary and sufficient to consider representative bounded executions, that is,

the executions that follow precomputed schemas. Interestingly, one can encode

9

schemas in linear integer arithmetic and thus eliminate counter abstraction.

In practice, this speeds up verification dramatically. Finally, we extend these

results to safety and liveness properties that can be encoded in a fragment of

linear temporal logic with F and G. Due to these results, we have verified safety

and liveness of 10 threshold-guarded fault-tolerant algorithms.

Part II includes one conference paper presented at POPL [Konnov et al.

2017b] and two journal articles published in Formal Methods in Systems De-

sign [Konnov et al. 2017a] and Journal of Information & Computation [Konnov

et al. 2017c]. The journal articles extend the results that were presented at three

conferences: CONCUR, CAV, and PSI [Konnov et al. 2014; 2015; 2016b]. For

this reason, these three conference papers are not included in the thesis.

Part III: Parameterized Synthesis of Threshold-Guarded Distributed Algorithms.

We consider the problem of automatically synthesizing guards in threshold au-

tomata. The approach introduced in Part II is crucial for synthesis: we have

integrated Byzantine model checker with a synthesizer in the counterexample-

guided inductive synthesis loop. Using this synthesis technique, we have auto-

matically generated all possible threshold guards for reliable broadcast, hybrid

broadcast, and Byzantine one-step consensus (BOSCO).

Part III includes the paper that was presented at the conference on Principles

of Distributed Systems (OPODIS) [Lazic et al. 2017].

Part IV: Parameterized Extension of Behavior-Interaction-Priority Framework.

We extend the framework of Behavior-Interaction-Priority (BIP) to the param-

eterized case. To this end, we introduce First-Order Interaction Logic (FOIL),

which allows one to specify component interactions as first-order formulas. We

show that FOIL can express rendezvous, synchronous broadcasts, token passing,

etc. in parameterized systems. FOIL can be used for identifying parameterized

verification techniques that can be applied to a parameterized BIP design.

Part IV includes the conference paper that was presented at CONCUR [Kon-

nov et al. 2016a].

In the rest of this chapter, we put the results of Parts I–IV in perspective.

10

Overview of Part I

Chapter 1: Towards modeling and model checking fault-tolerant

distributed algorithms [John et al. 2013b]

As was mentioned in the introduction, fault-tolerant distributed algorithms

are usually published in pseudo-code, as exemplified with BOSCO in Figure 1

(page 2). Hence, the first step towards verification of such algorithms is their

formalization. In Chapter 1, we propose to use Promela as a pragmatic spec-

ification language that is supported by the Spin model checker. However, we

noticed that the communication primitives offered by Promela are quite dif-

ferent from those that are used in the asynchronous fault-tolerant distributed

algorithms, e.g., reliable broadcast by Srikanth and Toueg [1987b] and BOSCO.

On one hand, Promela offers the user the following communication primitives:

shared variables, synchronous message passing (rendezvous), and point-to-point

asynchronous message passing (bounded FIFO channels). On the other hand,

fault-tolerant algorithms use the message counting primitives: (1) send a mes-

sage of a specific type to all other processes, and (2) count the number of distinct

messages of a given type that were received from all the processes.

Main contributions. In Chapter 1, we introduce two approaches to formaliza-

tion of message-counting: (a) FIFO channels and (b) message counters, that is,

integer counters that accumulate the number of sent and received messages. We

also present two approaches to modeling Byzantine processes: (a) explicit faults,

that is, distinct processes send messages of predefined types in arbitrary order,

and (b) fault injection, that is, the message counters are non-deterministically

incremented, which models delivery of messages from the faulty processes.

Importantly, we do not consider rendezvous communication, as it can block a

process on the receiving side, which can be exploited by an adversarial Byzantine

process. In fact, even a crashing process would block a distributed system with

rendezvous communication. This explains why rendezvous synchronization is

typically not used in fault-tolerant distributed algorithms.

Following these modeling choices, we formalize several algorithms: folklore

broadcast by Chandra and Toueg [1996], reliable broadcast by Srikanth and

Toueg [1987b], Byzantine agreement by Bracha and Toueg [1985], and condition-

based consensus by Mostéfaoui et al. [2003]. We checked small instances of these

11

algorithms with Spin. The experiments showed that Promela models with

message counters and fault injection produce significantly smaller search spaces

than the models with FIFO channels and explicit faults.

Modeling explained. It is also important that our modeling with message coun-

ters and fault injection supports parameterization in the number of processes

and faults. This modeling is used in the parameterized verification technique of

Chapter 3. As it is essential for the following chapters, we informally introduce

it here using the example of BOSCO in Figure 1.

Consider the binary consensus, that is, every process is initialized with a

value from the set {0, 1}, and eventually all the correct processes have to decide

on the same value. Additionally, the processes should not decide on different

values, and if a process decides on a value, this should be the initial value of

one of the correct processes. In our modeling, the ith correct process maintains

a protocol counter pc(i) that ranges over a finite set of control locations, e.g.,

init0 for being initialized with value 0, sent1 for having sent value 1, decide0 for

having decided on value 0.

Further, the processes share an integer counter nsntM , one per mes-

sage type M . So, in our example the processes have access to the coun-

ters nsnt 〈Vote,0〉 and nsnt 〈Vote,1〉, which accumulate the number of the mes-

sages 〈Vote, 0〉 and 〈Vote, 1〉 broadcast by the correct processes. Hence, the

broadcast statement broadcast <VOTE, vp> to all processors in line 2 of

BOSCO is modeled as the increment of the shared variable, for instance:

if (pc(i) == init0) nsnt 〈Vote,0〉++

Apart from the protocol counter, every correct process has a local vari-

able nrcvdM (i), one per a message type M . Such a variable maintains the

number of messages of type M received from the distinct processes. At ev-

ery algorithmic step of the process i, the next value of nrcvdM (i) is updated

non-deterministically to model message delivery, for instance:

nrcvd 〈Vote,0〉(i) ≤ nrcvd ′〈Vote,0〉(i) ≤ nsnt 〈Vote,0〉 + f (1)

One way of implementing Equation 1 in Promela is by non-deterministically

incrementing the received variable for a message type x:

12

nex t r cvd x = rcvd x ;

i f

: : nex t r cvd x < rcvd x + f −> nex t r cvd x ++;

: : skip ; /∗ do nothing ∗/

f i ;

Alternatively, in the later versions of our modeling, we are using the fol-

lowing symbolic constraint, which we introduced in our parametric extension of

Promela, e.g., see [Konnov and Widder 2018]:

assume (nex t r cvd x >= rcvd x) ;

assume (nex t r cvd x <= nsnt x + f) ;

Note that a correct process may receive up to f messages from the faulty

processes, although it does not have to. Since the distributed algorithm is de-

signed for the model of reliable communication, we impose a fairness constraint

for every message type saying that eventually the number of messages received

by a correct process is at least as large as the number of messages sent by the

correct processes, for instance:

F G nrcvd 〈Vote,0〉(i) ≥ nsnt 〈Vote,0〉

Finally, a comparison such as “n − t VOTE messages are received” in

line 3 is modeled as an arithmetic comparison over the local variables and the

parameters:

nrcvd 〈Vote,0〉(i) + nrcvd 〈Vote,1〉(i) ≥ n− t

Chapter 2: Accuracy of Message Counting Abstraction in Fault-

Tolerant Distributed Algorithms [Konnov et al. 2017d]

In Chapter 1, we have introduced modeling with message counters. Although

it seems intuitively clear that this modeling is equivalent to the modeling that

stores sent and received messages in message buffers or sets, we did not give a

proof of soundness there. In Chapter 2, we give a formal argument for this equiv-

alence: There is a bisimulation between asynchronous message-passing models

that use message counters and models that use message sets. As a result, the

models using message counters and the models using message sets satisfy the

same CTL?-formulas.

13

Main contributions. The main contributions of Chapter 2 are concerned with

message-passing with delays. In this model, the time of message delivery lies

in the interval [δ−, δ+] for fixed constants δ−, δ+ ∈ R. This model is typical

for clock synchronization algorithms and is used, for example, in the optimal

clock synchronization by Srikanth and Toueg [1987a] (they assume δ− = 0).

To this end, we introduced timed automata of two kinds: (MPTA) encoding

message-passing with sets and (MCTA) encoding message counters.

It would be natural to expect that the systems of MPTA should be equiv-

alent to the systems of MCTA, as in the asynchronous case considered above.

However, timed automata use a more refined notion of equivalence that takes

duration of transitions into account (clocks are uniformly advanced in time

automata). Timed bisimulation [Čerāns 1993] and time-abstracting bisimula-

tion [Tripakis and Yovine 2001] offer such equivalences in the framework of time

automata. Interestingly, in Chapter 2 we show that neither timed bisimulation,

nor time-abstracting bisimulation are preserved when one replaces message sets

with message counters. Roughly speaking, message counters abstract away the

identities of the processes that have sent messages, and thus introduce new

orders, in which messages may be delivered.

We prove in Chapter 2 that there is a way to construct timed simulations

between systems of MPTA and MCTA, in both directions. Thus, the systems of

message-counting timed automata satisfy the same ATCTL-formulas as the sys-

tems of message-passing timed automata. (Formulas in ATCTL quantify over all

paths, as opposite to formulas in ETCTL that quantify over some paths.) In fact,

model checkers for timed automata such as UPPAAL [Behrmann et al. 2006]

support a subset of formulas from ATCTL. Hence, message counting preserves

sufficiently many properties for model checking.

Chapter 3: Parameterized model checking of fault-tolerant dis-

tributed algorithms by abstraction [John et al. 2013c]

In this chapter we are using the modeling introduced in Chapter 1 and consider

the following parameterized model checking problem:

∀n, t, f. RC(n, t, f)⇒ S(n, t, f) |= ϕ(n, t, f) (2)

In this problem, S(n, t, f) corresponds to a distributed system of n identical

processes, up to f of which are faulty, and t is an upper bound on f . The

14

distinction between t and f is important, as the process code can refer to the

upper bound t, but cannot refer to the actual number of faulty processes f ,

which is unknown to the correct processes. Some combinations of parameters

are not interesting in practice:

• The numbers of faults f = −1 and f = 2n are not realistic.

• There are too many faults for the distributed problem to be solvable,

e.g., when the upper bound on the number of Byzantine faults is t ≥ n
3 ,

agreement cannot be solved [Pease et al. 1980].

Thus, the scope of the parameterized model checking problem in Equa-

tion (2) is restricted with a resilience condition RC(n, t, f).

Finally, ϕ(n, t, f) is a formula in LTL \ X: linear temporal logic without the

next-time operator. Importantly, the atomic predicates in ϕ can refer to the

shared variables such as nsnt , the parameters n, t, f , and formulas indexed over

protocol locations, e.g., [∃i. pc(i) = decide0] or [∀i. pc(i) = decide1].

The problem in Equation (2) poses two challenges:

1. As in the classical parameterized model checking, (cf. Bloem et al. [2015]),

the specification ϕ must be checked for all possible instances of S.

2. In contrast to the classical parameterized model checking, the code of a

single process uses the parameters n, t, and f . Although the transition

system of a single process is finite for every choice of parameter values, it

varies with the parameters.

We address both of these challenges by applying a new form of parametric

interval abstraction in two steps: (1) abstract message counters nrcvdM (i) and

nsntM in the process code to obtain uniform and finite-state process code (data

abstraction), and (2) abstract the integer process counters that keep the number

of processes in each local state (counter abstraction).

To this end, we introduce the abstract domain of parametric intervals. For

instance, the domain D introduced for BOSCO contains the following intervals1:

[0, 1), [1, t+ 1),
[
t+ 1,

⌈
n−t+1

2

⌉)
,[⌈

n−t+1
2

⌉
,
⌈
n+3t+1

2

⌉)
,
[⌈
n+3t+1

2

⌉
, n− t

)
, [n− t,∞).

1BOSCO requires us to consider several domains that differ in the order of the thresholds.
For simplicity, we give only the domain D.

15

The interval bounds are parametric and are extracted from the threshold

guards that are present in a distributed algorithm. (The interval [0, 1) being an

exception, which allows us to distinguish absence of processes in a local state

from presence of processes in a local state.) These abstract domains generalize

the domain {0, 1,∞}, which was introduced by Pnueli et al. [2002].

Data abstraction. Using the domain D, we define an abstraction function that

maps concrete values to the intervals from D and translate the expressions over

the variables nrcvdM (i) and nsntM to expressions over the abstract variables

n̂rcvdM (i) and n̂sntM and over the abstract values I[0,1), . . . , I[n−t,∞). This

translation is done with the help of an SMT solver. For instance, the comparison

nrcvd 〈Vote,0〉(i) < t + 1 becomes n̂rcvd 〈Vote,0〉(i) = I[0,1) ∨ n̂rcvd 〈Vote,0〉(i) =

I[1,t+1). By doing so, we obtain process code that (1) is independent of the

parameters, and (2) produces finitely-many local states.

Counter abstraction. As data abstraction produces processes with finitely-

many states, we can enumerate all the local states in a set L = {`1, . . . , `m}
and switch to the counter representation. That is, instead of representing a sys-

tem state of n processes as a tuple (`s(1), . . . , `s(n), g), where g keeps the values

of the shared variables, we represent the system state with the shared state g

and m integer counters κ1, . . . , κm that sum up to n − f .2 This counter repre-

sentation captures the parameterized system: By choosing the parameter values

and counters values in an initial state, we define a subspace of the states that

corresponds to the chosen parameters. Importantly, this is just a change of rep-

resentation, not an overapproximation, as the system processes are anonymous.

(The processes may have identifiers, but they are not used in the code.)

Note that the counter representation has infinitely many states, though when

fixing the parameters, it still produces finitely many states. To map the counter

representation to a finite state system, we apply the parametric interval abstrac-

tion over the abstract domain D to the counters κ1, . . . , κ|L| and construct the

counter system over abstract counters κ̂1, . . . , κ̂|L|. This gives us an abstract

finite state system that can be checked with an of-the-shelf model checker such

as Spin or NuSMV.

2In case of Byzantine faults, we explicitly model n− f correct processes and “inject” mes-
sages from the faulty processes. For the crash faults, we would have n processes and a distin-
guished “crashed” local state.

16

Counterexamples to liveness. Not surprisingly, our abstraction may produce

spurious counterexamples, that is, counterexamples in the abstract system that

do not have corresponding behavior in the concrete instances of the distributed

algorithm. In our experiments, these counterexamples were produced when

checking liveness properties. Essentially, there were two sources of spurious be-

havior: (1) too coarse counting caused by counter abstraction, and (2) unfair

loops that were produced by too coarse (abstract) fairness constraints. In-

terestingly, regarding (2), similar effect of counter abstraction on fairness was

investigated by Pnueli et al. [2002] for their {0, 1,∞}-counter abstraction. To

cope with the spurious counterexamples, we have introduced an abstraction re-

finement loop (following the CEGAR approach by Clarke et al. [2003]). The

refinement loop works in practice, though it is not guaranteed to terminate.

Indeed, the space of counter representation is infinite.

Implementation and experiments. We implemented this abstraction in the

early version of Byzantine model checker (ByMC) and, for the first time, auto-

matically verified safety and liveness of reliable broadcast by Srikanth and Toueg

[1987b] in presence of various kinds of faults: Byzantine, crash, symmetric, and

omission faults.

Overview of Part II

In part I, we followed the classical approach to model checking: we specified

the algorithms in Promela and introduced abstractions to reduce the param-

eterized model checking problem to finite-state model checking. This approach

worked for relatively simple algorithms such as folklore broadcast and reliable

broadcast. However, it did not scale to more advanced algorithms such as

condition-based consensus and BOSCO; the latter is shown in Figure 1. In this

part, we introduce efficient techniques that are tailored to threshold-guarded

fault-tolerant distributed algorithms. These techniques build upon three key

observations:

1. Threshold automata. This model expresses threshold-guarded algorithms

in terms of automata over finitely-many local states and shared message

counters. It has no explicit local message counters. Hence, the distributed

systems that run threshold-guarded algorithms can be directly expressed

as counter systems. We introduced this model in [Konnov et al. 2014].

17

`0

`1

`SE0

`SE1

`D0

`D1

`U0

`U1

r1 : true 7→ s0++, s01++

r7 : true 7→ s1++, s01++

r2 : φA ∧ s0 + f ≥ τD0

r8 : φA ∧ s1 + f ≥ τD1

r3 : φA ∧ s0 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

r4 : φA ∧ s0 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

r5 : φA ∧ s0 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

r6 : φA
∧ s1 <

τD0 ∧ s1
< τD1 ∧ s0

+ f ≥ τU0
∧ s1 <

τU1

Figure 2: A threshold automaton for one-step Byzantine consensus (BOSCO).
Labels of dashed edges are omitted; they can be obtained from the respective
solid edges by swapping 0 and 1. The expressions τD0, τD1, τU0, and τU1 are
threshold expressions defined as follows: τD0 = τD1 = dn+3t+1

2 e and τU0 = τU1 =
dn−t+1

2 e

2. Acceleration. We introduce a domain-specific form of acceleration, which

allows several processes to perform the same global step together. For

instance, several processes may broadcast a message of the same type in a

single step. This acceleration allows us to compress long executions into

shorter ones.

3. Complete bounded model checking. We analyze bounded executions of

counter systems produced by threshold automata. Interestingly, by em-

ploying reduction and acceleration arguments, we show that it is necessary

and sufficient to analyze executions up to a certain pre-computable bound.

Similarly for liveness, we analyze lassos of bounded length.

Threshold automata

As Chapters 4–6 use the model of threshold automata, we informally introduce

threshold automata in this section. The formal definitions can be found in

Chapter 4. Figure 2 shows a threshold automaton that encodes the BOSCO

algorithm, which was introduced in Figure 1 (page 2).

18

A threshold automaton models a single correct process. Technically, a

threshold automaton is a directed multigraph with finitely many nodes and

edges. Its nodes are called locations and the edges are called rules. The lo-

cations model local states of a distributed algorithm, whereas the rules model

transitions that are performed by one or several processes that follow the dis-

tributed algorithm. For instance, in BOSCO, the locations encode the local

states of processes as follows:

• The locations `0 and `1 model the initial states of the correct processes

that have 0 and 1 on their input respectively.

• The locations `SE0 and `SE1 model the intermediate states of the correct

processes that have sent 0 and 1 respectively, but have not decided yet.

• The locations `D0 and `D1 model the states of the correct processes that

have decided on 0 and 1 respectively.

• The locations `U0 and `U1 model the states of the correct processes that

have called the underlying consensus with values 0 and 1 respectively.

A configuration of a distributed system is modeled as a vector of natural

numbers that contains the values of: (1) system parameters such as n, t, and f ;

(2) message counters such as s0, s1, and s01; (3) process counters such as κ[`0],

κ[`D0], etc. Similar to modeling in Part I, the message counters accumulate the

number of messages that were sent by the correct processes. In our example,

the (global) message counters s0 and s1 accumulate the number of 〈VOTE, 0〉 and

〈VOTE, 1〉 messages that were sent by the correct processes respectively, whereas

the message counter s01 accumulates the sum of s0 and s1.

The automaton rules are labeled with threshold guards and increments. A

threshold guard compares a message counter, such as s0, against a linear combi-

nation of parameters, such as n−t−f . In general, every rule can be labelled with

a conjunction of threshold guards. An increment action such as s1++ prescribes

the automaton to increment the global message counter by one.

In our example, the threshold automaton has the following guards that en-

code the conditions of the pseudo-code in Figure 1:

• The guard φA is defined as s01 + f ≥ n− t. This guard corresponds to the

condition in line 3 of the pseudo-code: “n − t VOTE messages have been

received”.

19

• The guards s0 + f ≥ τD0 and s1 + f ≥ τD1, where both thresholds τD0

and τD1 are defined as n+3t+1
2 . These guards correspond to the condition

in line 4 of the pseudo-code: “more than n+3t
2 VOTE messages contain the

same value v”.

• The guards s0 + f ≥ τU0 and s1 + f ≥ τU1, where both thresholds τU0

and τU1 are defined as n−t+1
2 . These guards correspond to the condition

in line 7 of the pseudo-code: “more than n−t
2 VOTE messages contain the

same value v”.

• The guards s0 < τD0, s1 < τD1, s0 < τU0, and s1 < τU1. These guards are

used to encode the “else” branches in the pseudo-code.

Two comments are in order. First, as is usual in the distributed computing

literature, we write thresholds in rational arithmetic, e.g., n+3t+1
2 . This is done

purely for the presentation purposes — these guards can be encoded in linear

integer arithmetic. Second, the guards like s0+f ≥ τD0 contain the summand f ,

while the guards like s0 < τD0 do not. This concerns with a very subtle issue of

modeling Byzantine faults. When a process is testing, whether it has received

at least x messages, f Byzantine processes can change the outcome of the guard

by sending up to f messages. However, when a process is testing, whether it

has not received x messages, the Byzantine processes can change the outcome

of the guard by not sending messages at all.

Importantly, we impose several constraints on the structure of threshold

automata. Most prominently, a threshold automaton is not allowed to increment

a shared variable in a cycle. Indeed, that would correspond to a correct process

sending a message multiple times, which is not useful in the computational

model of reliable communication.

If a rule is enabled in a global configuration, that is, its guard evaluates to

true and the counter of the source location is positive, then the rule can move

the system into a new configuration. There are two kinds of transitions: (1) a

non-accelerated transition that corresponds to the rule fired by one process,

and (2) an accelerated transition that corresponds to the rule fired by m > 1

processes.

In the non-accelerated case, the rule decrements the counter of the source

location, increments the counter of the target location and increments the shared

variables, as prescribed by the rule’s actions. (Obviously, when a rule forms a

20

self loop, the location counters should not change.) For instance, the rule r2

decrements κ[`SE0] and increments κ[`D0], provided that the threshold guards

φA and s0 + f ≥ φD0 hold true, and κ[`SE0] > 0.

In the accelerated case, the rule decrements the counter of the source lo-

cation by m, increases the counter of the target location by m and, if shared

variables are incremented by the rule, increases the respective shared variables

by m. This can be done if: (a) the rule guard holds true for all acceleration fac-

tors between 1 and m−1, and (b) the value of the counter in the source location

is at least m (obviously, this condition should be ignored for self loops). Num-

ber m is called acceleration factor. It can vary from transition to transition and

can be arbitrarily large. Clearly, a non-accelerated transition can be seen as a

special case of an accelerated transition. Hence, for a rule r and an acceleration

factor m > 0, we write rm to denote an accelerated transition performed by m

processes. Finally, with r0 we denote the vacuous transition doing nothing.

We call a sequence of transitions a schedule. Given a configuration σ and a

schedule τ , one can define the notions of τ being applicable to σ, and, if τ is

applicable to σ, the resulting configuration τ(σ). Schedules represent executions

of a distributed system.

Our notion of acceleration is quite natural in the context of threshold-

guarded distributed algorithms. More importantly, it allows us to design efficient

model checking techniques, as explained below.

Chapter 4: On the completeness of bounded model checking for

threshold-based distributed algorithms: Reachability

We focus on the problem of parameterized reachability for counter systems of

threshold automata. More precisely, given a threshold automaton TA and two

predicates Init and Bad on the configurations of the respective counter system,

we ask the following question:

Are there a configuration σ, for some values of the parameters, and a sched-

ule τ that together have the following properties:

1. Configuration σ is an initial configuration: Init(σ) holds true,

2. there is a path from σ that follows the schedule τ , and

3. Bad(σ′) holds true for the last configuration σ′ = τ(σ).

21

Note that the configurations include the values of the parameters, and thus,

the above question is parameterized in the number of processes and faults. An

instance of this question is verification of the agreement property in BOSCO: Is

there an execution that leads to a global state, in which one process decides on

value 0, whereas another process decides on value 1? If this question is answered

positively, then the agreement property does not hold, and σ and τ provide us

with a counterexample. Otherwise, the property holds for all parameter values.

This verification question can be encoded by choosing the following predicates:

Init ≡ n > 3t ∧ t ≥ f ≥ 0

Bad ≡ κ[`D0] 6= 0 ∧ κ[`D1] 6= 0

We observe that every schedule of a counter system of threshold automata

has only a bounded number C of transitions that can “unlock” (or “lock”) other

rules, that is, by increasing the value of a shared variable a rule may enable (or

disable) another rule of a threshold automaton. The number C can be computed

from the structure of a threshold automaton.

Main contributions. The main contribution of Chapter 4 is in showing that the

counter systems of threshold automata have bounded diameters (Theorem 8).

Moreover, we give an upper bound on the diameter diam of a counter system of a

threshold automaton TA: It is (C+1)·|R|+C, whereR is the number of automata

rules. By noticing that C ≤ |R|, we further conclude that diam ≤ |R|2.
In the proof of Theorem 8 [Konnov et al. 2017c][p. 17], we show that every

schedule can be split into C + 1 segments that are joined by “milestone” tran-

sitions. By applying reordering arguments, we show that the transitions inside

segments can be sorted with respect to the topological order of the rules in the

threshold automaton. This kind of reasoning is inspired by the reduction argu-

ments by Lipton [1975], but it is applied in the domain of threshold automata.

As the threshold automaton may contain cycles, we introduce a preprocessing

step that eliminates fruitless repetitions of the cycles.

Implementation and experiments. As a practical application of this theoreti-

cal result, we computed the diameters of the counter abstraction, which was

introduced in Part I, and ran NuSMV to verify properties of more complex

threshold-guarded distributed algorithms. This approach did not scale signifi-

22

cantly better than the approach from Chapter 3. However, it laid the ground

for the efficient reduction-based techniques of Chapters 5 and 6.

Chapter 5: Para2: parameterized path reduction, acceleration,

and SMT for reachability in threshold-guarded distributed algo-

rithms

The result of Chapter 4 tells us that it is necessary and sufficient to test ex-

ecutions whose length is bounded by a precomputed number. While we used

the result to check counter abstractions up to the diameter bound, the proof of

Chapter 4 applies to the counter systems, that is, systems where counters are

non-negative integers, not the abstract values. In this chapter, we encode the pa-

rameterized reachability problem directly as a bounded model checking problem

in linear integer arithmetic. By doing so, we eliminate counter abstraction and

thus eliminate the refinement loop that was necessary in Chapter 3. In compar-

ison to the abstraction technique of Chapter 3, the technique presented in this

chapter is not only theoretically sound, but is also complete: (1) the bounded

model checking problem is encoded in a decidable theory, that is, linear integer

arithmetic, and (2) the diameter bound gives us a completeness threshold for

reachability properties (cf. [Clarke et al. 2004]).

However, there remains one obstacle. A straightforward encoding of bounded

model checking in linear integer arithmetic requires us to encode a non-

deterministic choice of the rule applied at every step of an execution. In this

chapter, we introduce more refined reduction arguments that allow us to avoid

this non-deterministic choice. We show that in order to explore all the bounded

executions, it is necessary and sufficient to explore only the executions that can

be generated by a finite set of so-called schemas.

In a nutshell, a schema is a sequence of rules interleaved with a sequence

of sets of threshold guards, which should get unlocked or locked in the course

of an execution. In our example of BOSCO in Figure 2, the following schema

captures some of the executions that may lead two processes to the locations `D0

and `D1 and thus violate the agreement property:

{} r1 {s0 + f ≥ τD0} r7 {s0 + f ≥ τD0, s1 + f ≥ τD1}
r1, r7 {φA, s0 + f ≥ τD0, s1 + f ≥ τD1} r2, r8 (S1)

23

Schema (S1) starts with all guards disabled, executes an accelerated transi-

tion according to rule r1, which enables the guard s0 + f ≥ τD0, executes an ac-

celerated transition following the rule r7 and so on. It is easy to see that schemas

can be easily encoded in linear integer arithmetic. One introduces the counters

for all the intermediate configurations and the acceleration factors and encodes

the constraints that are imposed by the threshold guards and the updates of

the counters. By conjoining these constraints with the violation of agreement,

that is, κ[`D0] 6= 0 ∧ κ[`D1] 6= 0, we produce a query that states existence of an

execution that follows schema (S1) and violates agreement. Satisfiability of this

query can be checked with an SMT solver. If the query is satisfiable, a satisfying

assignment constitutes a counterexample to the property.

Main contributions. We show that for every counter system of threshold au-

tomata, there is a finite set of schemas S with the following property (Theo-

rem 4.2): Every configuration that can be reached by an execution of the counter

system can be also reached by an execution that is generated by a schema from

the set S.

Moreover, we show how to construct such a set of schemas. Although this

construction follows the main reduction principles formulated in Chapter 4, it

introduces reduction of multiple executions, in contrast to a single execution.

One technical difficulty of this construction is in finding schemas that would

capture cycles that originate from different locations and end up in different

locations. We have solved this by embedding spanning trees into schemas. As a

result, the parameterized reachability in counter systems of threshold automata

is reduced to a finite set of SMT queries.

Implementation and experiments. We have implemented this technique in our

tool ByMC and verified safety of 10 threshold-guarded distributed algorithms,

including the complex ones: BOSCO by Song and van Renesse [2008], condition-

based consensus by Mostéfaoui et al. [2003], consensus in one communication

step by Brasileiro et al. [2001]. This technique proved to be a dramatic improve-

ment over the techniques from Chapters 3 and 4. This is one of the state-of-

the-art techniques that are implemented in the latest version of ByMC. These

experiments have successfully passed the artifact evaluation at CAV’15 [Konnov

et al. 2015].

24

Chapter 6: A short counterexample property for safety and live-

ness verification of fault-tolerant distributed algorithms

The results of Chapter 5 made it possible to verify safety of threshold-guarded

distributed algorithms. (More precisely, the results allow us to verify those safety

properties whose violation can be expressed with reachability.) However, it is a

folklore knowledge in distributed computing that a safe distributed algorithm is

quite easy to design: An algorithm that is doing nothing is always safe. Hence,

to convince the algorithm designer that her algorithm is solving a distributed

problem, one has to verify both safety and liveness of a distributed algorithm.

In this chapter, we extend the schema-based approach to liveness properties.

We faced the following challenges:

1. Finding a good logic. In our early work [John et al. 2012], we considered

LTL \ X over the atomic propositions that quantify over protocol counter,

e.g., [∀i. pc(i) = D0] and [∃i. pc(i) = S1]. There, we have shown that this

logic alone allows one to simulate the non-halting property of a two-counter

machine, which immediately leads to undecidability [John et al. 2012][The-

orem 6]. Curiously, this proof did not require the processes to communicate

at all.

Hence, it was crucial to find a fragment of LTL that is, on one hand,

sufficiently expressive to capture the liveness properties of the threshold-

guarded distributed algorithms, and, on the other hand, does not imme-

diately lead to undecidability.

2. Finding completeness thresholds for liveness. It is well known that using

the diameter bound in bounded model checking of liveness leads to in-

completeness [Biere et al. 1999]. Hence, Kroening and Strichman [2003]

and Kroening et al. [2011] computed recurrence diameters. However, in

general the recurrence diameters are exponentially larger than the diam-

eters, which makes them impractical for verification purposes.

3. Reduction arguments for liveness. In Chapters 4 and 5, the reordering of

transitions had to be done in such a way that evaluation of the guards

was not affected. When reordering transitions with respect to safety and

liveness properties, one has to pay attention of not changing the atomic

propositions in the intermediate configurations.

25

Main contributions. To address the first challenge, we introduce the logic

ELTLFT that has a number of restrictions: (1) the only temporal operators are

G (always) and F (eventually); (2) the temporal formulas can be only con-

joined, no disjunctions are allowed; (3) the atomic propositions are restricted

to linear arithmetic over the shared variables and the parameters, conjunc-

tions
∧
`∈Locs κ[`] = 0 and disjunctions

∨
`∈Locs κ[`] 6= 0. This logic existentially

quantifies over the executions (as the prefix E in the name suggests), and thus

allows us to express existence of an execution that would violate a safety or

liveness property.

For the logic ELTLFT, we show that one can construct a finite set of lasso tem-

plates that differ in the order, in which the temporal subformulas starting with F

and G get satisfied. This result was inspired by the construction for LTL(F,G)

by Etessami et al. [2002]. We extend schemas with lasso-like schemas that end

up in a loop, and show how one can combine the schemas for reachability with

the lasso templates.

To address the second and the third challenges, we show that for the atomic

propositions of ELTLFT, one can reuse the schema construction from Chapter 5.

To this end, we prove that there are a few processes whose transitions have to be

explicitly tracked and the transitions of the other processes can be reordered as

in the reachability case. As a result, we can repeat the reordering argument for

reachability a few times, in order to construct schemas for safety and liveness.

Implementation and experiments. We have implemented this technique in the

latest version of ByMC. These results allowed us to verify both safety and

liveness of ten fault-tolerant distributed algorithms, including BOSCO by Song

and van Renesse [2008], condition-based consensus by Mostéfaoui et al. [2003],

consensus in one communication step by Brasileiro et al. [2001]. These exper-

iments have successfully passed the artifact evaluation at POPL’17 [Konnov

et al. 2017b].

Follow up results

In [Konnov et al. 2016b], we discussed the relation between the techniques of

Parts I and II. We also gave an idea of how one would translate Promela models

from Part I to threshold automata. This abstraction technique is implemented

in Byzantine model checker (ByMC).

26

In our recent tool paper [Konnov and Widder 2018], we further discuss the

difference between the modeling with threshold automata and explicit local mes-

sage counters. We compare the efficiency of ByMC on the manually crafted

threshold automata and the threshold automata that are automatically con-

structed by data abstraction. In most cases, the manually crafted threshold

automata are significantly easier to verify. We also report on the parallel exten-

sion of the techniques introduced in Chapters 5 and 6.

In his master thesis, Kukovec [2016] investigated extensions of this result to

other forms of threshold automata: guards with piecewise monotone functions,

reversal-bounded, reversible, etc. While some of these extensions also have

bounded diameters, in many cases parameterized reachability is undecidable.

We also studied the link between counter systems of threshold automata and

accelerated counter automata in [Kukovec et al. 2018].

Overview of Part III

Chapter 7: Synthesis of Distributed Algorithms with Parameter-

ized Threshold Guards

The thresholds in the threshold-guarded algorithms often vary, depending on

the assumptions about the computational model. The following thresholds are

often met in the literature: t+1, 2t+1, n−t, n2 , and n−t
2 . It is folklore knowledge

that some algorithms admit different combinations of thresholds. For instance,

reliable broadcast by Srikanth and Toueg [1987b] has three such combinations:

(1) t+ 1 and 2t+ 1, (2) t+ 1 and n− t, and (3) n− 2t and n− t.
In this chapter, we automatically find the thresholds for the sketches of

threshold automata, that is, threshold automata whose guards are partially

specified. For instance, in the threshold automaton of BOSCO (Figure 2 on

page 18), we replace the integer coefficients in the thresholds with unknown

coefficients. The threshold τD0 becomes ?τD0
a ·n+ ?τD0

b · t+ ?τD0
c , where ?τD0

a , ?τD0
b ,

and ?τD0
c are the unknowns that have to be found. Thus, the goal of the synthesis

algorithm is to find the values for all the unknowns, so that the resulting system

of threshold automata satisfies the expected safety and liveness properties.

Main contribution. To solve this synthesis problem, we integrate Byzantine

model checker into the CEGIS loop [Alur et al. 2013]: A synthesis oracle gen-

27

erates the values of unknowns and feeds them to our model checker ByMC,

and ByMC verifies the synthesized algorithm and feeds the counterexamples to

the oracle. A näıve implementation of the CEGIS loop does not scale to the

sophisticated algorithms such as BOSCO, as it keeps enumerating the vectors

of unknowns without analyzing the counterexamples. Hence, we introduce an

approach to generalize the counterexamples that are generated by the model

checker, in order to exclude large sets of executions. The key to this generaliza-

tion is in using the schemas. When the model checker finds a counterexample,

it analyzes the schema that was used to produce the counterexample and gener-

ates an SMT query that excludes many values of unknowns that would produce

similar counterexamples. This synthesis technique scales up to our benchmarks.

As the synthesis oracle draws values of unknowns from an infinite vector

space, the synthesis loop is not guaranteed to terminate. To bound the search

space, we restrict the thresholds to what we call “sane guards”. Sane guards

compare the values of message counters to values from the interval [0, n], which is

quite natural for threshold-guarded algorithms — indeed, the message counters

cannot go below 0 or above n. For the sane guards, we show that there is a

bounded search space, which guarantees termination of the synthesis loop.

Implementation and experiments. We have synthesized reliable broadcast

by Srikanth and Toueg [1987b], hybrid broadcast by Widder and Schmid [2007],

and BOSCO by Song and van Renesse [2008]. Interestingly, we have shown that

the resilience conditions of BOSCO are tight, and there are no other combina-

tions of threshold guards. We have also synthesized variations of the algorithms

that satisfy variations of the original specifications.

Overview of Part IV

Chapter 8: Parameterized Systems in BIP: Design and Model

Checking

In general, parameterized model checking is undecidable [Apt and Kozen 1986,

Suzuki 1988]. Thus, the research efforts in the field focus on finding classes of

parameterized protocols that have (semi-) decidable properties. These classes

are given in terms of “computational models”, that is, mathematical definitions

of concurrency, communication, etc., which vary in subtle details. The key

28

features of a particular computational model often become apparent only after

analyzing the respective decidability proof.

When writing the survey book on parameterized verification [Bloem et al.

2015], we noticed that the parameterized model checking techniques share the

same shortcomings:

1. To apply a technique, one has to invest a lot of manual effort, as the

system architecture and process behavior must be captured in the formal

language specific to the technique.

2. Given a distributed algorithm or the architecture of a distributed system,

it is often hard to tell, whether this specific instance belongs to a decidable

fragment, and, if so, which technique one should use.

3. It is hard to compare different techniques, as they are presented in different

computational models.

In the non-parameterized case, many forms of communication can be cap-

tured in the Behavior-Interaction-Priority (BIP), which was introduced by Basu

et al. [2011] to encompass various architectural styles. This framework builds

upon the notion of an interaction, which identifies the components that can

communicate within the interaction. The set of possible system interactions is

defined in BIP as a model of a formula in propositional interaction logic.

Main contributions. In this chapter, we extend the propositional interaction

logic to a parameterized version, which we call first-order interaction logic

(FOIL). Using FOIL, we formalize the following parameterized architectures:

cliques communicating via pairwise rendezvous, cliques communicating via syn-

chronous broadcasts, and token-passing rings.

We show how to encode FOIL formulas for those architectures in SMT.

Hence, given a parameterized BIP design, our technique automatically finds the

architecture, to which the design belongs. This gives us a way of systematically

integrating many parameterized model checking techniques in a single tool.

Experiments. We have implemented a prototype tool that takes a parameter-

ized BIP design at its input and checks, whether it fits the computational models

of the classical techniques: VASS techniques for star architectures and cliques

by German and Sistla [1992], cut-off techniques for token rings by Emerson and

29

Namjoshi [1995], well-structured transition systems techniques for broadcast sys-

tems by Abdulla et al. [1996]. This tool successfully found the architectures of

the following classical protocols: Milner’s scheduler, semaphore implementation

with rendezvous, and barrier synchronization.

Individual contribution to the papers

The results presented in this cumulative habilitation thesis are based on joint

work of several co-authors that was done in an equally distributed joint collab-

oration, which makes it hard to define individual roles of each co-author. To

reflect this, as is customary in the field, in most cases, the order of the au-

thors’ names is alphabetical. When it is not the case, the co-authors wished to

emphasize more significant contribution of the first authors.

The authors of [Konnov et al. 2016a] decided to change the order of the

authors and put my name and the names of Tomer Kotek and Qiang Wang

first to reflect that fact that a large body of the work was done during Wang’s

internship at TU Wien. However, all co-authors contributed to developing the

theoretical framework, writing the paper, etc.

For the papers John et al. [2013c], Konnov et al. [2017a;b;c], Lazic et al.

[2017], apart from contributing to the theoretical framework and the proofs, as

the author of ByMC, I implemented the techniques in this tool. I believe that

this does not lessen the contributions of my co-authors.

30

References

P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theo-
rems for infinite-state systems. In LICS, 1996.

Ittai Abraham, Dahlia Malkhi, et al. The blockchain consensus layer and BFT.
Bulletin of EATCS, 3(123), 2017.

Francesco Alberti, Silvio Ghilardi, Elena Pagani, Silvio Ranise, and Gian Paolo
Rossi. Universal guards, relativization of quantifiers, and failure models in
model checking modulo theories. JSAT, 8(1/2):29–61, 2012.

Francesco Alberti, Silvio Ghilardi, Andrea Orsini, and Elena Pagani. Counter
abstractions in model checking of distributed broadcast algorithms: Some
case studies. In 31st Italian Conf. on Comp. Logic, pages 102–117, 2016.

Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In FMCAD, pages
1–8, 2013.

Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska, Josef Widder, and Florian
Zuleger. Parameterized model checking of synchronous distributed algorithms
by abstraction. In VMCAI, volume 10747 of Lecture Notes in Computer
Science, pages 1–24. Springer, 2018.

K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent
systems. IPL, 15:307–309, 1986.

Hagit Attiya and Jennifer Welch. Distributed Computing. Wiley, 2nd edition,
2004.

Peter Bailis and Kyle Kingsbury. The network is reliable. Queue, 12(7):20:20–
20:32, July 2014.

Thomas Ball, Vladimir Levin, and Sriram K Rajamani. A decade of software
model checking with SLAM. CACM, 54(7):68–76, 2011.

A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen, and
J. Sifakis. Rigorous component-based system design using the BIP frame-
work. Software, IEEE, 2011.

31

Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John H̊akansson,
Paul Pettersson, Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In QEST,
pages 125–126, 2006.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2004.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. In TACAS, volume 1579 of LNCS, pages
193–207, 1999.

Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin,
Helmut Veith, and Josef Widder. Decidability of Parameterized Verification.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast proto-
cols. J. ACM, 32(4):824–840, 1985.

Aaron R. Bradley. IC3 and beyond: Incremental, inductive verification. In CAV,
page 4, 2012.

Francisco Vilar Brasileiro, Fab́ıola Greve, Achour Mostéfaoui, and Michel Ray-
nal. Consensus in one communication step. In PaCT, volume 2127 of LNCS,
pages 42–50, 2001.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. In LICS,
pages 428–439, 1990.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173–186, 1999.

Kārlis Čerāns. Decidability of bisimulation equivalences for parallel timer pro-
cesses. In CAV, volume 663 of LNCS, pages 302–315, 1993.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. JACM, 43(2):225–267, March 1996.

Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made
live: an engineering perspective. In PODC, pages 398–407. ACM, 2007.

Bernadette Charron-Bost and André Schiper. The heard-of model: computing in
distributed systems with benign faults. Distributed Computing, 22(1):49–71,
2009.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM, 50(5):752–794, 2003.

32

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of Programs,
volume 131 of LNCS, pages 52–71, 1981.

Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman. Com-
pleteness and complexity of bounded model checking. In VMCAI, volume 2937
of LNCS, pages 85–96, 2004.

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,
editors. Handbook of Model Checking. Springer, 2018.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Ko-
gan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Na-
gle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szyma-
niak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s
globally distributed database. ACM Trans. Comput. Syst., 31(3):8, 2013.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 1579
of LNCS, pages 337–340. 2008.

Giorgio Delzanno, Michele Tatarek, and Riccardo Traverso. Model checking
paxos in spin. In Int. Symposium on Games, Automata, Logics and Formal
Verification, pages 131–146, 2014.

Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien
Zufferey. A logic-based framework for verifying consensus algorithms. In
VMCAI, volume 8318 of Lecture Notes in Computer Science, pages 161–181.
Springer, 2014.

Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. Psync: a partially
synchronous language for fault-tolerant distributed algorithms. In POPL,
pages 400–415. ACM, 2016.

E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In POPL, pages
85–94, 1995.

Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with
two variables and unary temporal logic. Inf. Comput., 179(2):279–295, 2002.

Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, 1985.

Dana Fisman, Orna Kupferman, and Yoad Lustig. On verifying fault tolerance
of distributed protocols. In TACAS, volume 4963 of LNCS, pages 315–331.
Springer, 2008.

33

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In EUROCRYPT, pages 281–310, 2015.

A. Geist. How to kill a supercomputer: Dirty power, cosmic rays, and bad
solder. IEEE Spectrum, 10, 2016.

Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39:675–735, 1992.

Annu Gmeiner, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Wid-
der. Tutorial on parameterized model checking of fault-tolerant distributed
algorithms. In Formal Methods for Executable Software Models, LNCS, pages
122–171. Springer, 2014.

Patrice Godefroid. Using partial orders to improve automatic verification meth-
ods. In CAV, volume 531 of LNCS, pages 176–185, 1990.

Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with
PVS. In CAV, volume 1254 of LNCS, pages 72–83, 1997.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving
practical distributed systems correct. In SOSP, pages 1–17, 2015.

Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM: A tool for automatic verification of probabilistic systems. In TACAS,
pages 441–444, 2006.

Gerard Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder.
Counter attack on Byzantine generals: Parameterized model checking of fault-
tolerant distributed algorithms. arXiv CoRR, abs/1210.3846, 2012.

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Brief
announcement: parameterized model checking of fault-tolerant distributed
algorithms by abstraction. In PODC, pages 119–121, 2013a.

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder.
Towards modeling and model checking fault-tolerant distributed algorithms.
In SPIN, volume 7976 of LNCS, pages 209–226, 2013b.

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder.
Parameterized model checking of fault-tolerant distributed algorithms by ab-
straction. In FMCAD, pages 201–209, 2013c.

Igor Konnov and Josef Widder. ByMC: Byzantine model checker. In ISoLA
2018, Part III, LNCS, pages 327–342, 2018. doi: 10.1007/978-3-030-03424-5\
22.

34

Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded
model checking for threshold-based distributed algorithms: Reachability. In
CONCUR, volume 8704 of LNCS, pages 125–140, 2014.

Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter
abstraction: Parameterized model checking of threshold-based distributed al-
gorithms. In CAV (Part I), volume 9206 of LNCS, pages 85–102, 2015.

Igor Konnov, Tomer Kotek, Qiang Wang, Helmut Veith, Simon Bliudze, and
Joseph Sifakis. Parameterized Systems in BIP: Design and Model Checking.
In CONCUR 2016, volume 59 of LIPIcs, pages 30:1–30:16, 2016a.

Igor Konnov, Helmut Veith, and Josef Widder. What you always wanted to
know about model checking of fault-tolerant distributed algorithms. In PSI
2015, in Memory of Helmut Veith, Revised Selected Papers, volume 9609 of
LNCS, pages 6–21. Springer, 2016b.

Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. Para2: Param-
eterized path reduction, acceleration, and SMT for reachability in threshold-
guarded distributed algorithms. Formal Methods in System Design, 51(2):
270–307, 2017a.

Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short coun-
terexample property for safety and liveness verification of fault-tolerant dis-
tributed algorithms. In POPL, pages 719–734, 2017b.

Igor V. Konnov, Helmut Veith, and Josef Widder. On the completeness of
bounded model checking for threshold-based distributed algorithms: Reach-
ability. Inf. Comput., 252:95–109, 2017c.

Igor V. Konnov, Josef Widder, Francesco Spegni, and Luca Spalazzi. Accuracy
of message counting abstraction in fault-tolerant distributed algorithms. In
VMCAI, pages 347–366, 2017d.

Daniel Kroening and Ofer Strichman. Efficient computation of recurrence di-
ameters. In VMCAI, volume 2575 of LNCS, pages 298–309, 2003.

Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James
Worrell. Linear completeness thresholds for bounded model checking. In
CAV, volume 6806 of LNCS, pages 557–572, 2011.

Jure Kukovec. Generalizing threshold automata for reachability in param-
eterized systems. Master’s thesis, University of Ljubljana, 2016. URL:
http://forsyte.at/wp-content/uploads/Kukovec-27142109-2016.pdf.

Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parameterized
systems: All flavors of threshold automata. In CONCUR 2018, pages 19:1–
19:17, 2018.

35

http://forsyte.at/wp-content/uploads/Kukovec-27142109-2016.pdf

Marta Z. Kwiatkowska and Gethin Norman. Verifying randomized byzantine
agreement. In FORTE, pages 194–209, 2002.

Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala. Automated ver-
ification of a randomized distributed consensus protocol using cadence SMV
and PRISM. In CAV, pages 194–206, 2001.

Leslie Lamport. The implementation of reliable distributed multiprocess sys-
tems. Computer Networks (1976), 2(2):95–114, 1978.

Leslie Lamport. “Sometime” is sometimes “not never” - on the temporal logic
of programs. In POPL, pages 174–185, 1980.

Leslie Lamport. The part-time parliament. ACM TOCS, 16(2):133–169, 1998.

Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

Leslie Lamport. Specifying systems: The TLA+ language and tools for hardware
and software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state ma-
chine. ACM SIGACT News, 41(1):63–73, 2010.

Marijana Lazic, Igor Konnov, Josef Widder, and Roderick Bloem. Synthesis
of distributed algorithms with parameterized threshold guards. In OPODIS,
volume 95 of LIPIcs, pages 32:1–32:20, 2017.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR-16, Revised Selected Papers, pages 348–370, 2010.

Richard J. Lipton. Reduction: A method of proving properties of parallel pro-
grams. Commun. ACM, 18(12):717–721, 1975.

Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

Nancy A. Lynch and Eugene W. Stark. A proof of the Kahn principle for
input/output automata. Information and Computation, 82(1):81–92, 1989.

Ognjen Marić, Christoph Sprenger, and David A. Basin. Cutoff Bounds for
Consensus Algorithms. In CAV, pages 217–237, 2017.

Kenneth L. McMillan. Modular specification and verification of a cache-coherent
interface. In FMCAD, pages 109–116. IEEE, 2016.

Achour Mostéfaoui and Michel Raynal. Solving consensus using chandra-toueg’s
unreliable failure detectors: A general quorum-based approach. In DISC,
pages 49–63, 1999.

Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Ray-
nal. Evaluating the condition-based approach to solve consensus. In DSN,
pages 541–550, 2003.

36

T. Noguchi, T. Tsuchiya, and T. Kikuno. Safety verification of asyn-
chronous consensus algorithms with model checking. In Dependable Com-
puting (PRDC), pages 80–88, 2012.

Diego Ongaro. Consensus: Bridging theory and practice. PhD thesis, Stanford
U., 2014.

Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In USENIX ATC, pages 305–320, 2014.

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
made EPR: decidable reasoning about distributed protocols. PACMPL, 1
(OOPSLA):108:1–108:31, 2017.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in
the presence of faults. J.ACM, 27(2):228–234, 1980.

Doron Peled. All from one, one for all: on model checking using representatives.
In CAV, volume 697 of LNCS, pages 409–423, 1993.

Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0,1,∞)- counter ab-
straction. In CAV, volume 2404 of LNCS, pages 93–111. 2002.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concur-
rent systems in CESAR. In International Symposium on Programming, 5th
Colloquium, Proceedings, pages 337–351, 1982.

Alexander Randall, 5th. Q&A: A lost interview with ENIAC
co-inventor J. Presper Eckert, February 2006. URL https:

//www.computerworld.com/article/2561813/computer-hardware/

q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.

html. [Online; retrieved 20-September-2018].

Fred B Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asyn-
chronous consensus. In DISC, volume 5218 of LNCS, pages 438–450, 2008.

T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the
ACM, 34(3):626–645, 1987a.

T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Dist. Comp., 2:80–94, 1987b.

Ichiro Suzuki. Proving properties of a ring of finite-state machines. Inf. Process.
Lett., 28(4):213–214, 1988.

Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-
abstracting bisimulations. FMSD, 18:25–68, 2001.

37

https://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
https://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
https://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
https://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html

Tatsuhiro Tsuchiya and André Schiper. Verification of consensus algorithms
using satisfiability solving. Dist. Comp., 23(5–6):341–358, 2011.

Antti Valmari. Stubborn sets for reduced state space generation. In Advances
in Petri Nets 1990, volume 483 of LNCS, pages 491–515. Springer, 1991.

Josef Widder and Ulrich Schmid. Booting clock synchronization in partially
synchronous systems with hybrid process and link failures. Dist. Comp., 20
(2):115–140, 2007.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. Verdi: a framework for imple-
menting and formally verifying distributed systems. In PLDI, pages 357–368,
2015.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+
specifications. In Correct Hardware Design and Verification Methods, pages
54–66. Springer, 1999.

38

Part I

Modeling of Fault-Tolerant Distributed

Algorithms and Model Checking by

Abstraction

39

Chapter 1

Towards modeling and model checking fault-

tolerant distributed algorithms

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Wid-
der. Towards modeling and model checking fault-tolerant distributed al-
gorithms. SPIN, vol. 7976 of LNCS, pp. 209–226, 2013.

doi: http://dx.doi.org/10.1007/978-3-642-39176-7_14

41

http://dx.doi.org/10.1007/978-3-642-39176-7_14

Towards Modeling and Model Checking

Fault-Tolerant Distributed Algorithms�

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder

Vienna University of Technology (TU Wien)

Abstract. Fault-tolerant distributed algorithms are central for building
reliable, spatially distributed systems. In order to ensure that these algo-
rithms actually make systems more reliable, we must ensure that these
algorithms are actually correct. Unfortunately, model checking state-of-
the-art fault-tolerant distributed algorithms (such as Paxos) is currently
out of reach except for very small systems.

In order to be eventually able to automatically verify such fault-
tolerant distributed algorithms also for larger systems, several problems
have to be addressed. In this paper, we consider modeling and verifi-
cation of fault-tolerant algorithms that basically only contain threshold
guards to control the flow of the algorithm. As threshold guards are
widely used in fault-tolerant distributed algorithms (and also in Paxos),
efficient methods to handle them bring us closer to the above mentioned
goal.

As a case study we use the reliable broadcasting algorithm by Srikanth
and Toueg that tolerates even Byzantine faults. We show how one can
model this basic fault-tolerant distributed algorithm in Promela such
that safety and liveness properties can be efficiently verified in Spin. We
provide experimental data also for other distributed algorithms.

1 Introduction

Even formally verified computer systems are subject to power outages, electri-
cal wear-out, bit-flips in memory due to ionizing particle hits, etc., which may
easily cause system failures. Replication is a classic approach to ensure that a
computer system is fault-tolerant, i.e., continues to correctly perform its task
even if some components fail. The basic idea is to have multiple computers in-
stead of a single one (that would constitute a single point of failure), and ensure
that the replicated computers coordinate, and for instance in the case of repli-
cated databases, store the same information. Ensuring that all computers agree
on the same information is non-trivial due to several sources of non-determinism,
namely, faults, uncertain message delays, and asynchronous computation steps.

To address these issues, fault-tolerant distributed algorithms for state ma-
chine replication were introduced many years ago [33]. As they are designed to

� Supported by the Austrian National Research Network S11403 and S11405 (RiSE)
of the Austrian Science Fund (FWF) and by the Vienna Science and Technology
Fund (WWTF) through grants PROSEED, ICT12-059, and VRG11-005.

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 209–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42

210 A. John et al.

increase the reliability of computing systems, it is crucial that these algorithms
are indeed correct, i.e., satisfy their specifications. Due to the various sources of
non-determinism, however, it is very easy to make mistakes in the correctness
arguments for fault-tolerant distributed algorithms. As a consequence, they are
very natural candidates for model checking. Still, model checking fault-tolerant
distributed algorithms is particularly challenging due to the following reasons:

(i) Due to their inherent concurrency and the many sources of non-determinism,
fault-tolerant distributed algorithms suffer from combinatorial explosion in
the state-space, and in the number of behaviors. Moreover, distributed al-
gorithms usually involve parameters such as the system size n and the
maximum number of faulty components t.

(ii) Correctness and even solvability of problems like distributed agreement de-
pend critically upon assumptions on the environment, in particular, degree
of concurrency, message delays, and failure models; e.g., guaranteeing cor-
rect execution is impossible if there is no restriction on the number of faulty
components in the system and/or the way how they may fail.

(iii) There is no commonly agreed-upon distributed computing model, but rather
many variants, which differ in (sometimes subtle) details such as atomicity
of a computing step. Moreover, distributed algorithms are usually described
in pseudocode, typically using different (alas unspecified) pseudocode lan-
guages, which obfuscates the relation to the underlying computing model.

A central and important goal of our recent work is hence to initiate a systematic
study of distributed algorithms from a verification point of view, in a way that
does not betray the fundamentals of distributed algorithms. Experience tells that
this has not always been observed in the past: The famous bakery algorithm [22]
is probably the most striking example from the literature where wrong specifica-
tions have been verified or wrong semantics have been considered: Many papers
in formal methods have verified the correctness of the bakery algorithm as an
evidence for their practical applicability. Viewed from a distributed algorithms
perspective, however, most of these papers missed the fact that the algorithm
does not require atomic registers but rather safe registers only [23]— a sub-
tle detail that is admittedly difficult to extract from the distributed algorithms
literature for non-experts. Still, compared to state-of-the-art fault-tolerant dis-
tributed algorithms— and even the algorithms considered in this paper —the
bakery algorithm rests on a quite simple computational model, which shows the
need for a structured approach to handle distributed algorithms.

Contributions. In this paper, we present a structured approach for modeling
an important family of fault-tolerant distributed algorithms, namely, threshold-
guarded distributed algorithms discussed in Section 2. As threshold-guarded
commands are omnipresent in this domain, our work is an important step to-
wards the goal of verifying state-of-the-art fault-tolerant distributed algorithms.
In Section 3, we obtain models of distributed algorithms expressed in slightly
extended Promela [20] to capture the notions required to fully express fault-
tolerant distributed algorithms and their environments, including resilience

43

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 211

conditions involving parameters like n and t, fairness conditions, and atomic-
ity assumptions. This formalization allows us to (i) instantiate system instances
for different system sizes in order to perform explicit state model checking using
Spin as discussed in Section 4, and (ii) build a basis for our parameterized model
checking technique based on parametric interval abstraction discussed in [21].

Using our approach, we can already formalize and model check several basic
fault-tolerant distributed algorithms for fixed parameters, i.e., numbers of pro-
cesses and faults. These algorithms include several variants of the classic asyn-
chronous broadcasting algorithm from [34] under various fault assumptions, the
broadcasting algorithm from [6] tolerating Byzantine faults, the classic broad-
casting algorithm found, e.g., in [9], that tolerates crash faults, as well as a
condition-based consensus algorithm [27] that also tolerates crash faults.

This captures the most interesting problems that are solvable [16] by dis-
tributed algorithms running in a purely asynchronous environment with faults.
Our verification results build a corner stone for the verification of more ad-
vanced fault-tolerant distributed algorithms [13,9,26,37,10,18]. These algorithms
use threshold-guarded commands as a building block, yet contain other features
that call for additional model checking techniques.

2 Threshold-Guarded Distributed Algorithms

Processes, which constitute the distributed algorithms we consider, exchange
messages, and change their state predominantly based on the received messages.
In addition to the standard execution of actions, which are guarded by some
predicate on the local state, most basic distributed algorithms (cf. [24,3]) add
existentially or universally guarded commands involving received messages:

i f r e c e i v ed <m>
from some proce s s

then act ion (m) ;

(a) existential guard

i f r e c e i v ed <m>
from a l l p r o c e s s e s

then act ion (m) ;

(b) universal guard

Depending on the content of the message <m>, the function action performs a
local computation, and possibly sends messages to one or more processes. Such
constructs can be found, e.g., in (non-fault-tolerant) distributed algorithms for
constructing spanning trees, flooding, mutual exclusion, or network synchroniza-
tion [24]. Understanding and analyzing such distributed algorithms is already far
from being trivial, which is due to the partial information on the global state
present in the local state of a process. However, faults add another source of non-
determinism. In order to shed some light on the difficulties facing a distributed
algorithm in the presence of faults, consider Byzantine faults [28], which allow a
faulty process to behave arbitrarily: Faulty processes may fail to send messages,
send messages with erroneous values, or even send conflicting information to
different processes. In addition, faulty processes may even collaborate in order
to increase their adverse power.

44

212 A. John et al.

Fault-tolerant distributed algorithms work in the presence of such faults and
provide some “higher level” service: In case of distributed agreement (or consen-
sus), e.g., this service is that all non-faulty processes compute the same result
even if some processes fail. Fault-tolerant distributed algorithms are hence used
for increasing the system-level reliability of distributed systems [30].

If one tries to build such a fault-tolerant distributed algorithm using the con-
struct of Example (a) in the presence of Byzantine faults, the (local state of
the) receiver process would be corrupted if the received message <m> originates
in a faulty process. A faulty process could hence contaminate a correct process.
On the other hand, if one tried to use the construct of Example (b), a correct
process would wait forever (starve) when a faulty process omits to send the
required message. To overcome those problems, fault-tolerant distributed algo-
rithms typically require assumptions on the maximum number of faults, and
employ suitable thresholds for the number of messages which can be expected
to be received by correct processes. Assuming that the system consists of n
processes among which at most t may be faulty, threshold-guarded commands
such as the following are typically used in fault-tolerant distributed algorithms:

i f r e c e i v ed <m> from n−t d i s t i n c t p r o c e s s e s
then act ion (m) ;

Assuming that thresholds are functions of the parameters n and t, threshold
guards are a just generalization of quantified guards as given in Examples (a)
and (b): In the above command, a process waits to receive n− t messages from
distinct processes. As there are at least n− t correct processes, the guard cannot
be blocked by faulty processes, which avoids the problems of Example (b). In
the distributed algorithms literature, one finds a variety of different thresholds:
Typical numbers are �n/2+1� (for majority [13,27]), t+1 (to wait for a message
from at least one correct process [34,13]), or n− t (in the Byzantine case [34,2]
to wait for at least t+ 1 messages from correct processes, provided n > 3t).

In the setting of Byzantine fault tolerance, it is important to note that the
use of threshold-guarded commands implicitly rests on the assumption that a
receiver can distinguish messages from different senders. This can be achieved,
e.g., by using point-to-point links between processes or by message authentica-
tion. What is important here is that Byzantine faulty processes are only allowed
to exercise control on their own messages and computations, but not on the
messages sent by other processes and the computation of other processes.

Reliable Broadcast and Related Specifications. The specifications considered in
the area of fault tolerance differ from more classic areas, such as concurrent
systems where dining philosophers and mutual exclusion are central problems.
For the latter, one is typically interested in local properties, e.g., if a philosopher i
is hungry, then i eventually eats. Intuitively, dining philosophers requires us to
trace indexed processes along a computation, e.g., ∀i. G (hungryi → (F eatingi)),
and thus to employ indexed temporal logics for specifications [7,11,12,14].

In contrast, fault-tolerant distributed algorithms are typically used to achieve
global properties. Reliable broadcast is an ongoing “system service” with the

45

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 213

following informal specification: Each process i may invoke a primitive called
broadcast by calling bcast(i,m), where m is a unique message content. Processes
may deliver a message by invoking accept(i,m) for different process and message
pairs (i,m). The goal is that all correct processes invoke accept(i,m) for the same
set of (i,m) pairs, under some additional constraints: all messages broadcast by
correct processes must be accepted by all correct processes, and accept(i,m) may
not be invoked, unless i is faulty or i invoked bcast(i,m). Our case study is to
verify that the algorithm from [34] implements these primitives on top of point-
to-point channels, in the presence of Byzantine faults. In [34], the instances for
different (i,m) pairs do not interfere. Therefore, we will not consider i and m.
Rather, we distinguish the different kinds of invocations of bcast(i,m) that may
occur, e.g., the cases where the invoking process is faulty or correct. Depending
on the initial state, we then have to check whether every/no correct process ac-
cepts. To capture this kind of properties, we have to trace only existentially or
universally quantified properties, e.g., a part of the broadcast specification (re-
lay) [34] states that if some correct process accepts a message, then all (correct)
processes accept the message, that is, G ((∃i. accepti)→ F (∀j. acceptj)).

We are therefore considering a temporal logic where the quantification over
processes is restricted to propositional formulas. We will need two kinds of quan-
tified propositional formulas that consider (i) the finite control state modeled as a
single status variable sv , and (ii) the possible unbounded data. We introduce the
set APSV that contains propositions that capture comparison against some sta-
tus value Z from the set of all control states, i.e., [∀i. sv i = Z] and [∃i. sv i = Z] .

This allows us to express specifications of distributed algorithms. To express
the mentioned relay property, we identify the status values where a process has
accepted the message. We may quantify over all processes as we only explicitly
model those processes that follow their code, that is, correct or benign faulty
processes. More severe faults that are unrestricted in their internal behavior
(e.g., Byzantine faults) are modeled via non-determinism in message passing.
For a detailed discussion see Section 3.

In order to express comparison of data variables, we add a set of atomic
propositions APD that capture comparison of data variables (integers) x, y, and
constant c; APD consists of propositions of the form [∃i. xi + c < yi] .

The labeling function of a system instance is then defined naturally as dis-
junction or conjunction over all process indices; cf. [21] for complete definitions.

Given an LTL \ X formula ψ over APD expressing justice [29], an LTL \ X
specification ϕ over APSV , a process description P in Promela, and the number
of (correct) processes N , the problem is to verify whether

P ‖ P ‖ · · · ‖ P︸ ︷︷ ︸
Ntimes

|= ψ → ϕ.

3 Threshold-Guarded Distributed Algorithms in Promela

Algorithm 1 is our case study for which we also provide a complete Promela
implementation later in Figure 4. To explain how we obtain this implementation,

46

214 A. John et al.

Algorithm 1. Core logic of the broadcasting algorithm from [34]

Code for processes i if it is correct:
Variables
1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉 from at least t + 1 distinct processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n− t distinct processes then
8: accepti ← true;

we proceed in three steps where we first discuss asynchronous distributed algo-
rithms in general, then explain our encoding of message passing for threshold-
guarded fault-tolerant distributed algorithms. Algorithm 1 belongs to this class,
as it does not distinguish messages according to their senders, but just counts
received messages, and performs state transitions depending on the number of
received messages; e.g., line 7. Finally we encode the control flow of Algorithm 1.
The rationale of the modeling decisions are that the resulting Promela model
(i) captures the assumptions of distributed algorithms adequately, and (ii) allows
for efficient verification either using explicit state enumeration (as discussed in
this paper) or by abstraction as discussed in [21]. After discussing the modeling
of distributed algorithms, we will provide the specifications in Section 3.4.

3.1 Computational Model for Asynchronous Distributed
Algorithms

We recall the standard assumptions for asynchronous distributed algorithms. A
system consists of n processes, out of which at most t may be faulty. When
considering a fixed computation, we denote by f the actual number of faulty
processes. Note that f is not “known” to the processes. It is assumed that
n > 3t∧ f ≤ t ∧ t > 0. Correct processes follow the algorithm, in that they take
steps that correspond to the algorithm. Between every pair of processes, there
is a bidirectional link over which messages are exchanged. A link contains two
message buffers, each being the receive buffer of one of the incident processes.

A step of a correct process is atomic and consists of the following three parts.
(i) The process possibly receives a message. A process is not forced to receive
a message even if there is one in its buffer [16]. (ii) Then, it performs a state
transition depending on its current state and the (possibly) received message.
(iii) Finally, a process may send at most one message to each process, that is, it
puts a message in the buffers of the other processes.

Computations are asynchronous in that the steps can be arbitrarily inter-
leaved, provided that each correct process takes an infinite number of steps.

47

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 215

(Algorithm 1 has runs that never accept and are infinite. Conceptually, the
standard model requires that processes executing terminating algorithms loop
forever in terminal states [24].) Moreover, if a message m is put into process p’s
buffer, and p is correct, then m is eventually received. This property is called
reliable communication.

From the above discussion we observe that buffers are required to be un-
bounded, and thus sending is non-blocking. Further, receiving is non-blocking
even if no message has been sent to the process. If we assume that for each mes-
sage type, each correct process sends at most one message in each run (as in Al-
gorithm 1), non-blocking send can in principle natively be encoded in Promela
using message channels. In principle, non-blocking receive also can be imple-
mented in Promela, but it is not a basic construct. We discuss the modeling
of message passing in more detail in Section 3.2.

Fault Types. In our case study Algorithm 1 we consider Byzantine faults, that
is, faulty processes are not restricted, except that they have no influence on the
buffers of links to which they are not incident. Below we also consider restricted
failure classes: omission faults follow the algorithm but may fail to send some
messages, crash faults follow the algorithm but may prematurely stop running.
Finally, symmetric faults need not follow the algorithm, but if they send mes-
sages, they send them to all processes. (The latter restriction does not apply to
Byzantine faults which may send conflicting information to different processes).

Verification Goal. Recall that there is a condition on the parameters n, t, and f ,
namely, n > 3t ∧ f ≤ t ∧ t > 0. As these parameters do not change during a
run, they can be encoded as constants in Promela. The verification problem
for a distributed algorithm with fixed n and t is then the composition of model
checking problems that differ in the actual value of f (satisfying f ≤ t).

3.2 Efficient Encoding of Message Passing

In threshold-guarded distributed algorithms, the processes (i) count how many
messages of the same type they have received from distinct processes, and change
their states depending on this number, (ii) always send to all processes (including
the process itself), and (iii) send messages only for a fixed number of types (only
messages of type 〈echo〉 are sent in Algorithm 1).

Fault-Free Communication. We discuss in the following that one can model
such algorithms in a way that is more efficient in comparison to a straightfor-
ward implementation with Promela channels. In our final modeling we have
an approach that captures both message passing and the influence of faults on
correct processes. However, in order to not clutter the presentation, we start our
discussion by considering communication between correct processes only (i.e.,
f = 0), and add faults later in this section.

In the following code examples we show a straightforward way to implement
“received 〈echo〉 from at least x distinct processes” and “send 〈echo〉 to all”

48

216 A. John et al.

using Promela channels: We declare an array p2p of n2 channels, one per pair
of processes, and then we declare an array rx to record that at most one 〈echo〉
message from a process j is received by a process i:

mtype = { ECHO }; /∗ one message type ∗/
chan p2p[NxN] = [1] of { mtype }; /∗ channels o f capaci ty 1 ∗/
bit rx[NxN]; /∗ a b i t map to implement ” d i s t i n c t ” ∗/
active[N] proctype STBcastChan() {
int i, nrcvd = 0; /∗ nr . o f echoes ∗/

Then, the receive code iterates over n channels: for non-empty channels it re-
ceives an 〈echo〉 message or not, and empty channels are skipped; if a message
is received, the channel is marked in rx:

i = 0; do
:: (i < N) && nempty(p2p[i * N + _pid]) ->

p2p[i * N + _pid]?ECHO; /∗ r e t r i e v e a message ∗/
if
:: !rx[i * N + _pid] ->

rx[i * N + _pid] = 1; /∗ mark the channel ∗/
nrcvd++; break; /∗ rece i ve at most one message ∗/

:: rx[i * N + _pid]; /∗ i gnore dup l i c a t e s ∗/
fi; i++;

:: (i < N) ->
i++; /∗ channel i s empty or postpone recept ion ∗/

:: i == N -> break;
od

Finally, the sending code also iterates over n channels and sends on each:

for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Recall that threshold-guarded algorithms have specific constraints: messages
from all processes are processed uniformly; every message is carrying only a
message type without a process identifier; each process sends a message to all
processes in no particular order. This suggests a simpler modeling solution. In-
stead of using message passing directly, we keep only the numbers of sent and
received messages in integer variables:

int nsnt; /∗ one shared va r i a b l e per a message type ∗/
active[N] proctype STBcast() {
int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes ∗/
...

step: atomic {
if /∗ rece i ve one more echo ∗/

:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd; /∗ or nothing ∗/
fi;
...
nsnt++; /∗ send echo to a l l ∗/

}

49

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 217

active[F] proctype Byz() {
step: atomic {

i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /∗ some ∗/
:: i == N -> break;
od

}; goto step;
}

active[F] proctype Omit() {
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
if :: correctCodeSendsAll ->
i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /∗ omit ∗/
:: i == N -> break;

od
:: skip;

fi
}; goto step;

}

active[F] proctype Symm() {
step: atomic {

if
:: /∗ send a l l ∗/

for (i : 1 .. N)
{ sendTo(i); }

:: skip; /∗ or none ∗/
fi

}; goto step;
}

active[F] proctype Clean() {
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
/∗ send as a correc t one ∗/
};
if

:: goto step;
:: goto crash;

fi;
crash:
}

Fig. 1. Modeling faulty processes explicitly: Byzantine (Byz), symmetric (Symm),
omission (Omit), and clean crashes (Clean)

As one process step is executed atomically (indivisibly), concurrent reads and
updates of nsnt are not a concern to us. Note that the presented code is based
on the assumption that each correct process sends at most one message. We
show how to enforce this assumption when discussing the control flow of our
implementation of Algorithm 1 in Section 3.3.

Recall that in asynchronous distributed systems one assumes communica-
tion fairness, that is, every message sent is eventually received. The statement
∃i. rcvd i < nsnt i describes a global state where messages are still in transit. It
follows that a formula ψ defined by

GF¬ [∃i. rcvd i < nsnti] (RelComm)

states that the system periodically delivers all messages sent by (correct) pro-
cesses. We are thus going to add such fairness requirements to our specifications.

Faulty Processes. In Figure 1 we show how one can model the different types
of faults discussed above using channels. The implementations are direct con-
sequences of the fault description given in Section 3.1. Figure 2 shows how the
impact of faults on processes following the algorithm can be implemented in
the shared memory implementation of message passing. Note that in contrast to

50

218 A. John et al.

/∗ N > 3T ∧ T ≥ F ≥ 0 ∗/
active[N-F] proctype ByzI() {
step: atomic {

if
:: (next_nrcvd < nsnt + F)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ F ≥ 0 ∗/
active[N] proctype OmitI() {
step: atomic {

if
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ Fp ≥ Fs ≥ 0 ∗/
active[N-Fp] proctype SymmI() {
step: atomic {
if
:: (next_nrcvd < nsnt + Fs)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N ≥ T ∧ T ≥ Fc ≥ Fnc ≥ 0 ∗/
active[N] proctype CleanI() {
step: atomic {
if
:: (next_nrcvd < nsnt - Fnc)

-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Fig. 2. Modeling the effect of faults on correct processes: Byzantine (ByzI), symmetric
(SymmI), omission (OmitI), and clean crashes (CleanI)

Figure 1, the processes in Figure 2 are not the faulty ones, but correct ones whose
variable next nrcvd is subject to non-deterministic updates that correspond
to the impact of faulty process. For instance, in the Byzantine case, in addition
to the messages sent by correct processes, a process can receive up to f messages
more. This is expressed by the condition (next nrcvd < nsnt + F).

For Byzantine and symmetric faults we only model correct processes explic-
itly. Thus, we specify that there are N-F copies of the process. Moreover, we
can use Property (RelComm) to model reliable communication. Omission and
crash faults, however, we model explicitly, so that we have N copies of processes.
Without going into too much detail, the impact of faulty processes is modeled by
relaxed fairness requirements: as some messages sent by these f faulty processes
may not be received, this induces less strict communication fairness:

GF¬ [∃i. rcvd i + f < nsnt i]

By similar adaptations one models, e.g., corrupted communication (e.g., due to
faulty links) [31], or hybrid fault models [4] that contain different fault scenarios.

Figure 3 compares the number of states and memory consumption when mod-
eling message passing using both solutions. We ran Spin to perform exhaustive

51

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 219

Fig. 3. Visited states (left) and memory usage (right) when modeling message passing
with channels (ch) or shared variables (var). The faults are in effect only when f > 0.
Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory.

state enumeration on the encoding of Algorithm 1 (discussed in the next sec-
tion). As one sees, the model with explicit channels and faulty processes ran
out of memory on six processes, whereas the shared memory model did so only
with nine processes. Moreover, the latter scales better in the presence of faults,
while the former degrades with faults. This leads us to use the shared memory
encoding based on nsnt variables.

3.3 Encoding the Control Flow

Recall Algorithm 1, which is written in typical pseudocode found in the dis-
tributed algorithms literature. The lines 3-8 describe one step of the algorithm.
Receiving messages is implicit and performed before line 3, and the actual send-
ing of messages is deferred to the end, and is performed after line 8.

We encoded the algorithm in Figure 4 using custom Promela extensions
to express notions of fault-tolerant distributed algorithms. The extensions are
required to express a parameterized model checking problem, and are used by
our tool that implements the abstraction methods introduced in [21]. These
extensions are only syntactic sugar when the parameters are fixed: symbolic is
used to declare parameters, and assume is used to impose resilience conditions
on them (but is ignored in explicit state model checking). Declarations atomic
<var> = all (...) are a shorthand for declaring atomic propositions that
are unfolded into conjunctions over all processes (similarly for some). Also we
allow expressions over parameters in the argument of active.

In the encoding in Figure 4, the whole step is captured within an atomic block
(lines 20–42). As usual for fault-tolerant algorithms, this block has three logical
parts: the receive part (lines 21–24), the computation part (lines 25–32), and
the sending part (lines 33–38). As we have already discussed the encoding of
message passing above, it remains to discuss the control flow of the algorithm.

Control State of the Algorithm. Apart from receiving and sending messages,
Algorithm 1 refers to several facts about the current control state of a process:
“sent 〈echo〉 before”, “if vi”, and “accept i ← true”. We capture all possible

52

220 A. John et al.

1 symbolic int N, T, F; /∗ parameters ∗/
2 /∗ the resilience condition ∗/
3 assume(N > 3 * T && T >= 1 && 0 <= F && F <= T);
4 int nsnt; /∗ number of echoes sent by correct processes ∗/
5 /∗ quantified atomic propositions ∗/
6 atomic prec_unforg = all(STBcast:sv == V0);
7 atomic prec_corr = all(STBcast:sv == V1);
8 atomic prec_init = all(STBcast@step);
9 atomic ex_acc = some(STBcast:sv == AC);

10 atomic all_acc = all(STBcast:sv == AC);
11 atomic in_transit = some(STBcast:nrcvd < nsnt);
12

13 active[N - F] proctype STBcast() {
14 byte sv, next_sv; /∗ status of the algorithm ∗/
15 int nrcvd = 0, next_nrcvd = 0; /∗ nr. of echoes received ∗/
16 if /∗ ini t ia l i ze ∗/
17 :: sv = V0; /∗ vi = false ∗/
18 :: sv = V1; /∗ vi = true ∗/
19 fi;
20 step: atomic { /∗ an indivisib le step ∗/
21 if /∗ receive one more echo (up to nsnt + F) ∗/
22 :: (next_nrcvd < nsnt + F) -> next_nrcvd = nrcvd + 1;
23 :: next_nrcvd = nrcvd; /∗ or nothing ∗/
24 fi;
25 if /∗ compute ∗/
26 :: (next_nrcvd >= N - T) ->
27 next_sv = AC; /∗ accepti = true ∗/
28 :: (next_nrcvd < N - T && sv == V1
29 || next_nrcvd >= T + 1) ->
30 next_sv = SE; /∗ remember that <echo> is sent ∗/
31 :: else -> next_sv = sv; /∗ keep the status ∗/
32 fi;
33 if /∗ send ∗/
34 :: (sv == V0 || sv == V1)
35 && (next_sv == SE || next_sv == AC) ->
36 nsnt++; /∗ send <echo> ∗/
37 :: else; /∗ send nothing ∗/
38 fi;
39 /∗ update local variables and reset scratch variables ∗/
40 sv = next_sv; nrcvd = next_nrcvd;
41 next_sv = 0; next_nrcvd = 0;
42 } goto step;
43 }
44 /∗ LTL−X formulas ∗/
45 ltl fairness { []<>(!in_transit) } /∗ added to other formulas ∗/
46 ltl relay { [](ex_acc -> <>all_acc) }
47 ltl corr { []((prec_init && prec_corr) -> <>(ex_acc)) }
48 ltl unforg { []((prec_init && prec_unforg) -> []!ex_acc) }

Fig. 4. Encoding of Algorithm 1 in Promela with symbolic extensions

53

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 221

control states in a finite set SV . For instance, for Algorithm 1 one can collect
the set SV = {V0,V1, SE,AC}, where:

– V0 corresponds to vi = false, accepti = false and 〈echo〉 is not sent.
– V1 corresponds to vi = true, accepti = false and 〈echo〉 is not sent.
– SE corresponds to the case accepti = false and 〈echo〉 been sent. Observe

that once a process has sent 〈echo〉, its value of vi does not interfere anymore
with the subsequent control flow.

– AC corresponds to the case accepti = true and 〈echo〉 been sent. A process
only sets accept to true if it has sent a message (or is about to do so in the
current step).

Thus, the control state is captured within a single status variable sv over SV
with the set SV 0 = {V0,V1} of initial control states.

3.4 Specifications

Specifications are an encoding of the broadcast properties [34], which contain a
safety property called unforgeability, and two liveness properties called correct-
ness and relay:

G ([∀i. sv i = V1]→ G [∀j. sv j = AC]) (U)

G ([∀i. sv i = V1]→ F [∃j. sv j = AC]) (C)

G ([∃i. sv i = AC]→ F [∀j. sv j = AC]) (R)

4 Experiments with SPIN

Figure 4 provides the central parts of the code of our case study. For the ex-
periments we have implemented four distributed algorithms that use threshold-
guarded commands, and differ in the fault model. We have one algorithm for
each of the fault models discussed. In addition, the algorithms differ in the
guarded commands. The following list is ordered from the most general fault
model to the most restricted one. The given resilience conditions on n and t are
the ones we expected from the literature, and their tightness was confirmed by
our experiments:

Byz. tolerates t Byzantine faults if n > 3t,
symm. tolerates t symmetric (identical Byzantine [3]) faults if n > 2t,
omit. tolerates t send omission faults if n > 2t,
clean. tolerates t clean crash faults for n > t.

In addition, we verified a folklore reliable broadcasting algorithm that tolerates
crash faults, which is given, e.g., in [9]. Further, we verified a Byzantine tolerant
broadcasting algorithm from [6]. For the encoding of the algorithm from [6] we
were required to use two message types— opposed to the one type of the 〈echo〉

54

222 A. John et al.

Table 1. Summary of experiments related to [34]

parameter values spec valid Time Mem. Stored Transitions Depth

Byz

B1 N=7,T=2,F=2 (U) ✓ 3.13 sec. 74 MB 193 · 103 1 · 106 229
B2 N=7,T=2,F=2 (C) ✓ 3.43 sec. 75 MB 207 · 103 2 · 106 229
B3 N=7,T=2,F=2 (R) ✓ 6.3 sec. 77 MB 290 · 103 3 · 106 229
B4 N=7,T=3,F=2 (U) ✓ 4.38 sec. 77 MB 265 · 103 2 · 106 233
B5 N=7,T=3,F=2 (C) ✓ 4.5 sec. 77 MB 271 · 103 2 · 106 233
B6 N=7,T=3,F=2 (R) ✗ 0.02 sec. 68 MB 1 · 103 13 · 103 210

omit

O1 N=5,To=2,Fo=2 (U) ✓ 1.43 sec. 69 MB 51 · 103 878 · 103 175
O2 N=5,To=2,Fo=2 (C) ✓ 1.64 sec. 69 MB 60 · 103 1 · 106 183
O3 N=5,To=2,Fo=2 (R) ✓ 3.69 sec. 71 MB 92 · 103 2 · 106 183
O4 N=5,To=2,Fo=3 (U) ✓ 1.39 sec. 69 MB 51 · 103 878 · 103 175
O5 N=5,To=2,Fo=3 (C) ✗ 1.63 sec. 69 MB 53 · 103 1 · 106 183
O6 N=5,To=2,Fo=3 (R) ✗ 0.01 sec. 68 MB 17 135 53

symm

S1 N=5,T=1,Fp=1,Fs=0 (U) ✓ 0.04 sec. 68 MB 3 · 103 23 · 103 121
S2 N=5,T=1,Fp=1,Fs=0 (C) ✓ 0.03 sec. 68 MB 3 · 103 24 · 103 121
S3 N=5,T=1,Fp=1,Fs=0 (R) ✓ 0.08 sec. 68 MB 5 · 103 53 · 103 121
S4 N=5,T=3,Fp=3,Fs=1 (U) ✓ 0.01 sec. 68 MB 66 267 62
S5 N=5,T=3,Fp=3,Fs=1 (C) ✗ 0.01 sec. 68 MB 62 221 66
S6 N=5,T=3,Fp=3,Fs=1 (R) ✓ 0.01 sec. 68 MB 62 235 62

clean

C1 N=3,Tc=2,Fc=2,Fnc=0 (U) ✓ 0.01 sec. 68 MB 668 7 · 103 77
C2 N=3,Tc=2,Fc=2,Fnc=0 (C) ✓ 0.01 sec. 68 MB 892 8 · 103 81
C3 N=3,Tc=2,Fc=2,Fnc=0 (R) ✓ 0.02 sec. 68 MB 1 · 103 17 · 103 81

Fig. 5. Spin memory usage (left) and running time (right) for Byz

messages in Algorithm 1. Finally, we implemented the asynchronous condition-
based consensus algorithm from [27]. We specialized it to binary consensus, which
resulted in an encoding which requires four different message types.

The major goal of the experiments was to check the adequacy of our formal-
ization. To this end, we first considered the four well-understood variants of [34],
for each of which we systematically changed the parameter values. By doing so,

55

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 223

Table 2. Summary of experiments with algorithms from [9,6,27]

parameter values spec valid Time Mem. Stored Transitions Depth

Folklore Broadcast [9]

F1 N=2 (U) ✓ 0.01 sec. 98 MB 121 7 · 103 77
F2 N=2 (R) ✓ 0.01 sec. 98 MB 143 8 · 103 48
F3 N=2 (F) ✓ 0.01 sec. 98 MB 257 2 · 103 76
F4 N=6 (U) ✓ 386 sec. 670 MB 15 · 106 20 · 106 272
F5 N=6 (R) ✓ 691 sec. 996 MB 24 · 106 370 · 106 272
F6 N=6 (F) ✓ 1690 sec. 1819 MB 39 · 106 875 · 106 328

Asynchronous Byzantine Agreement [6]

T1 N=5,T=1,F=1 (R) ✓ 131 sec. 239 MB 4 · 106 74 · 106 211
T2 N=5,T=1,F=2 (R) ✗ 0.68 sec. 99 MB 11 · 103 465 · 103 187
T3 N=5,T=2,F=2 (R) ✗ 0.02 sec. 99 MB 726 9 · 103 264

Condition-based consensus [27]

S1 N=3,T=1,F=1 (V0) ✓ 0.01 sec. 98 MB 1.4 · 103 7 · 103 115
S2 N=3,T=1,F=1 (V1) ✓ 0.04 sec. 98 MB 3 · 103 18 · 103 128
S3 N=3,T=1,F=1 (A) ✓ 0.09 sec. 98 MB 8 · 103 42 · 103 127
S4 N=3,T=1,F=1 (T) ✓ 0.16 sec. 66 MB 9 · 103 83 · 103 133
S5 N=3,T=1,F=2 (V0) ✓ 0.02 sec. 68 MB 1724 9835 123
S6 N=3,T=1,F=2 (V1) ✓ 0.05 sec. 68 MB 3647 23 · 103 136
S7 N=3,T=1,F=2 (A) ✓ 0.12 sec. 68 MB 10 · 103 55 · 103 135
S8 N=3,T=1,F=2 (T) ✗ 0.05 sec. 68 MB 3 · 103 17 · 103 135

we verify that under our modeling the different combination of parameters lead
to the expected result. Table 1 and Figure 5 summarize the results of our exper-
iments for broadcasting algorithms in the spirit of [34]. Lines B1 –B3, O1 – O3,
S1 – S3, and C1 –C3 capture the cases that are within the resilience condition
known for the respective algorithm, and the algorithms were verified by Spin.
In Lines B4 –B6, the algorithm’s parameters are chosen to achieve a goal that is
known to be impossible [28], i.e., to tolerate that 3 out of 7 processes may fail.
This violates the n > 3t requirement. Our experiment shows that even if only 2
faults occur in this setting, the relay specification (R) is violated. In Lines O4 –
O6, the algorithm is designed properly, i.e., 2 out of 5 processes may fail (n > 2t
in the case of omission faults). Our experiments show that this algorithm fails
in the presence of 3 faulty processes, i.e., (C) and (R) are violated.

Table 2 summarizes our experiments for the algorithms in [9], [6], and [27].
The specification (F) is related to agreement and was also used in [17]. Prop-
erties (V0) and (V1) are non-triviality, that is, if all processes propose 0 (1),
then 0 (1) is the only possible decision value. Property (A) is agreement and
similar to (R), while Property (T) is termination, and requires that every correct
process eventually decides. In all experiments the validity of the specifications
was as expected from the distributed algorithms literature.

For slightly bigger systems, that is, for n = 11 our experiments run out of
memory. This shows the need for parameterized verification of these algorithms.

56

224 A. John et al.

5 Related Work

As fault tolerance is required to increase the reliability of systems, the verification
of fault tolerance mechanisms is an important challenge. There are two classes
of approaches towards fault tolerance, namely fault detection, and fault masking.

Methods in the first class follow the fault detection, isolation, and recovery
(FDIR) principles: at runtime one tries to detect faults and to automatically
perform counter measures. In this area, in [32] Spin was used to validate a
design based on the well-known primary backup idea. Under the FDIR approach,
validation techniques have also been introduced in [15,8,19].

However, it is well understood that it is not always possible to reliably detect
faults; for instance, in asynchronous distributed systems it is not possible to
distinguish a process that prematurely stopped from a slow process, and in
synchronous systems there are cases where the border between correct and faulty
behavior cannot be drawn sharply [1]. To address such issues, fault masking has
been introduced. Here, one does not try to detect or isolate faults, but tries to
keep those components operating consistently that are not directly hit by faults,
cf. distributed agreement [28]. The fault-tolerant distributed algorithms that we
consider in this paper belong to this approach.

Specific masking fault-tolerant distributed algorithms have been verified, e.g.,
a consensus algorithm in [36], and a clock synchronization algorithm in [35].
In [25], a bug has been found in a previously published clock synchronization
algorithm that was supposed to tolerate Byzantine faults.

Formalization and verification of a class of fault-tolerant distributed algo-
rithms have been addressed in [5]. Their formalization uses the fact that for
many distributed algorithms it is relevant how many messages are received, but
the order in which they are received is not important. They provide a framework
for such algorithms and show that these algorithms can be efficiently verified
using partial order reduction. While in this work we consider similar message
counting ideas, our formalization targets at parameterized model checking [21]
rather than partial order reductions for systems of small size.

6 Conclusions

In this paper we presented a way to efficiently encode fault-tolerant threshold-
guarded distributed algorithms using shared variables. We showed that our en-
coding scales significantly better than a straightforward approach. With this
encoding we were able to verify small system instances of a number of broad-
casting algorithms [34,6,9] for diverse failure models. We could also find counter
examples in cases where we knew from theory that the given number of faults
cannot be tolerated. We also verified a condition-based consensus algorithm [27].

As our mid-term goal is to verify state-of-the-art fault-tolerant distributed
algorithms, there are several follow-up steps we are taking. In [21] we show
that the encoding we described in this paper is a basis for parameterized model
checking techniques that allow us to verify distributed algorithms for any system

57

Modeling and Model Checking Fault-Tolerant Distributed Algorithms 225

size. We have already verified some of the algorithms mentioned above, while we
are still working on techniques to verify the others. Also we are currently working
on verification of the Paxos-like Byzantine consensus algorithm from [26], which
is also threshold-guarded. The challenges of this algorithm are threefold. First, it
consists of three different process types — proposers, accepters, learners— while
the algorithms discussed in this paper are just compositions of processes of the
same type. Second, to tolerate a single fault, the algorithm requires at least four
proposers, six acceptors, and four learners. Our preliminary experiments show
that 14 processes is a challenge for explicit state enumeration. Third, as the
algorithm solves consensus, it cannot work in the asynchronous model [16], and
we have to restrict the interleavings of steps, and the message delays.

References

1. Ademaj, A.: Slightly-off-specification failures in the time-triggered architecture. In:
High-Level Design Validation and Test Workshop, pp. 7–12. IEEE (2002)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
Byzantine failures and little system synchrony. In: DSN, pp. 147–155 (2006)

3. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. John Wiley & Sons (2004)
4. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and

link failures. Theoretical Computer Science 412(40), 5602–5630 (2011)
5. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-

tolerant distributed protocols. In: DSN, pp. 73–84 (2011)
6. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J.

ACM 32(4), 824–840 (1985)
7. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many

identical finite state processes. Inf. Comput. 81, 13–31 (1989)
8. Bucchiarone, A., Muccini, H., Pelliccione, P.: Architecting fault-tolerant

component-based systems: from requirements to testing. Electr. Notes Theor. Com-
put. Sci. 168, 77–90 (2007)

9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

10. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distributed Computing 22(1), 49–71 (2009)

11. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008)

12. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

13. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

14. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL, pp. 85–94 (1995)
15. Feather, M.S., Fickas, S., Razermera-Mamy, N.A.: Model-checking for validation

of a fault protection system. In: HASE, pp. 32–41 (2001)
16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2), 374–382 (1985)

58

226 A. John et al.

17. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed
protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 315–331. Springer, Heidelberg (2008)

18. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and
systems-on-chip. Distributed Computing 24(6), 323–355 (2012)

19. Gnesi, S., Latella, D., Lenzini, G., Abbaneo, C., Amendola, A., Marmo, P.: A
formal specification and validation of a critical system in presence of Byzantine
errors. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 535–549. Springer,
Heidelberg (2000)

20. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

21. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Brief announcement: Pa-
rameterized model checking of fault-tolerant distributed algorithms by abstraction.
In: ACM PODC (to appear, 2013) (long version at arXiv CoRR abs/1210.3846)

22. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

23. Lamport, L.: On interprocess communication. Part I: Basic formalism. Distributed
Computing 1(2), 77–85 (1986)

24. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)
25. Malekpour, M.R., Siminiceanu, R.: Comments on the “Byzantine self-stabilizing

pulse synchronization”. protocol: Counterexamples. Tech. rep., NASA (February
2006)

26. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dep. Sec.
Comp. 3(3), 202–215 (2006)

27. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541–550 (2003)

28. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

29. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,∞)- counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

30. Powell, D.: Failure mode assumptions and assumption coverage. In: FTCS-22,
Boston, MA, USA, pp. 386–395 (1992)

31. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)

32. Schneider, F., Easterbrook, S.M., Callahan, J.R., Holzmann, G.J.: Validating re-
quirements for fault tolerant systems using model checking. In: ICRE, pp. 4–13
(1998)

33. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

34. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing 2, 80–94 (1987)

35. Steiner, W., Rushby, J.M., Sorea, M., Pfeifer, H.: Model checking a fault-tolerant
startup algorithm: From design exploration to exhaustive fault simulation. In: DSN,
pp. 189–198 (2004)

36. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms using satisfiability
solving. Distributed Computing 23(5-6), 341–358 (2011)

37. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing 20(2),
115–140 (2007)

59

60

Chapter 2

Accuracy of Message Counting Abstraction

in Fault-Tolerant Distributed Algorithms

Igor Konnov, Josef Widder, Francesco Spegni, and Luca Spalazzi. Accu-
racy of Message Counting Abstraction in Fault-Tolerant Distributed Algo-
rithms. VMCAI, vol. 10145 of LNCS, pp. 347–366, 2017.

doi: http://dx.doi.org/10.1007/978-3-319-52234-0_19

61

http://dx.doi.org/10.1007/978-3-319-52234-0_19

Accuracy of Message Counting Abstraction
in Fault-Tolerant Distributed Algorithms

Igor Konnov1(B), Josef Widder1, Francesco Spegni2, and Luca Spalazzi2

1 TU Wien (Vienna University of Technology), Vienna, Austria
konnov@forsyte.at

2 UnivPM, Ancona, Italy

Abstract. Fault-tolerant distributed algorithms are a vital part of
mission-critical distributed systems. In principle, automatic verification
can be used to ensure the absence of bugs in such algorithms. In prac-
tice however, model checking tools will only establish the correctness of
distributed algorithms if message passing is encoded efficiently. In this
paper, we consider abstractions suitable for many fault-tolerant distrib-
uted algorithms that count messages for comparison against thresholds,
e.g., the size of a majority of processes. Our experience shows that stor-
ing only the numbers of sent and received messages in the global state
is more efficient than explicitly modeling message buffers or sets of mes-
sages. Storing only the numbers is called message-counting abstraction.
Intuitively, this abstraction should maintain all necessary information.
In this paper, we confirm this intuition for asynchronous systems by
showing that the abstract system is bisimilar to the concrete system.
Surprisingly, if there are real-time constraints on message delivery (as
assumed in fault-tolerant clock synchronization algorithms), then there
exist neither timed bisimulation, nor time-abstracting bisimulation. Still,
we prove this abstraction useful for model checking: it preserves ATCTL
properties, as the abstract and the concrete models simulate each other.

1 Introduction

The following algorithmic idea is pervasive in fault-tolerant distributed com-
puting [13,21,30,33,36,39]: each correct process counts messages received from
distinct peers. Then, given the total number of processes n and the maximum
number of faulty processes t, a process performs certain actions only if the mes-
sage counter reaches a threshold such as n − t (this number ensures that faulty
processes alone cannot prevent progress in the computation). A list of bench-
mark algorithms that use such thresholds can be found in [27]. On the left of
Fig. 1, we give an example pseudo code [36]. This algorithm works in a timed
environment [35] (with a time bound τ+ on message delays) in the presence of
Byzantine faults (n > 3t) and provides safety and liveness guarantees such as:

Supported by: the Austrian Science Fund (FWF) through the National Research Net-
work RiSE (S11403 and S11405), and project PRAVDA (P27722); and by the Vienna
Science and Technology Fund (WWTF) through project APALACHE (ICT15-103).

c© Springer International Publishing AG 2017
A. Bouajjani and D. Monniaux (Eds.): VMCAI 2017, LNCS 10145, pp. 347–366, 2017.
DOI: 10.1007/978-3-319-52234-0 19

62

348 I. Konnov et al.

1 l o c a l myvali ∈ {0, 1}
2

3

4

5

6 do a t om i c a l l y
7 -- messages are received implicitly
8 i f myvali = 1
9 and not sent ECHO before

10 then send ECHO to a l l
11

12 i f received ECHO
13 from at least t + 1 distinct processes
14 and not sent ECHO before
15 then send ECHO to a l l
16

17 i f received ECHO
18 from at least n − t distinct processes
19 then accept
20 od

21 l o c a l myvali ∈ {0, 1}
22 g l o b a l nsntEcho ∈ N0 i n i t i a l l y 0
23 l o c a l hasSent ∈ B i n i t i a l l y F
24 l o c a l rcvdEcho ∈ N0 i n i t i a l l y 0
25

26 do a t om i c a l l y
27 i f (*) -- choose non-deterministically
28 and rcvdEcho < nsntEcho + f
29 then rcvdEcho++;
30

31 i f myvali = 1 and hasSent = F
32 then { nsntEcho++; hasSent = T; }
33

34

35 i f rcvdEcho ≥ t + 1 and hasSent = F
36 then { nsntEcho++; hasSent = T; }
37

38 i f rcvdEcho ≥ n − t
39 then accept
40 od

Fig. 1. Pseudocode of a broadcast primitive to simulate authenticated broadcast [36]
(left), and pseudocode of its message-counting abstraction (right)

(a) If a correct process accepts (that is, executes Line 19) at time T , then all
correct processes accept by time T + 2τ+.

(b) If all correct processes start with myval i = 0, then no correct process ever
accepts.

(c) If all correct processes start with myval i = 1, then at least one correct
process eventually accepts.

As is typical for the distributed algorithms literature, the pseudo code from
Fig. 1 omits “unnecessary book-keeping” details of message passing. That is,
neither the local data structures that store the received messages nor the message
buffers are explicitly described. Hence, if we want to automatically verify such
an algorithm design, it is up to a verification expert to find adequate modeling
and proper abstractions of message passing.

The authors of [23] suggested to model message passing using message coun-
ters instead of keeping track of individual messages. This modeling was shown
experimentally to be efficient for fixed size systems, and later a series of parame-
terized model checking techniques was based upon it [22,23,25–27]. The encoding
on the right of Fig. 1 is obtained by adding a global integer variable nsntEcho.
Incrementing this variable (Line 36) encodes that a correct process executes Line
15 of the original pseudo code. The ith process keeps the number of received mes-
sages in a local integer variable rcvdEchoi that can be increased, as long as the
invariant rcvdEchoi ≤ nsntEcho+ f is preserved, where f is the actual number
of Byzantine faulty processes in the run. (This models that correct processes
can receive up to f messages sent by faulty processes.) In fact, this modeling
can be seen as a message-counting abstraction of a distributed system that uses
message buffers.

The broadcast primitive in Fig. 1 is also used in the seminal clock synchro-
nization algorithm from [35]. For clock synchronization, the precision of the

63

Accuracy of Message Counting Abstraction 349

clocks depends on the timing behavior1 of the message system that the processes
use to re-synchronize; e.g., in [35] it is required that each message sent at an
instant T by a correct process must be delivered by a correct recipient process
in the time interval [T + τ−, T + τ+] for some bounds τ− and τ+ fixed in each
run.

The standard theory of timed automata [7] does not account for message pass-
ing directly. To incorporate messages, one specifies a message passing system as
a network of timed automata, i.e., a collection of timed automata that are sched-
uled with respect to interleaving semantics and interact via rendezvous, synchro-
nous broadcast, or shared variables [12]. In this case, there are two typical ways
to encode message passing: (i) for each pair of processes, introduce a separate
timed automaton that models a channel between the processes, or (ii) introduce
a single timed automaton that stores messages from timed automata (modeling
the processes) and delivers the messages later by respecting the timing con-
straints. The same applies to Timed I/O automata [24]. Both solutions main-
tain much more details than required for automated verification of distributed
algorithms such as [35]: First, processes do not compare process identifiers when
making transitions, and thus are symmetric. Second, processes do not compare
identifiers in the received messages, but only count messages.

For automated verification purposes, it appears natural to model such algo-
rithms with timed automata that use a message-counting abstraction. However,
the central question for practical verification is: how precise is the message-
counting abstraction? In other words, given an algorithm A, what is the strongest
equivalence between the model MS(A) using message sets and the model MC(A)
using message counting. If the message counting abstraction is too coarse, then
this may lead to spurious counterexamples, which may result in many refinement
steps [17], or even may make the verification procedure incomplete.

Contributions. We introduce timed and untimed models suitable for the verifica-
tion of threshold-based distributed algorithms, and establish relations between
these models. An overview of the following contributions is depicted in Fig. 2:

– We define a model of processes that count messages. We then compose them
into asynchronous systems (interleaving semantics). We give two variants: mes-
sage passing, where the messages are stored in sets, and message counting,
where only the number of sent messages is stored in shared variables.

– We then show that in the asynchronous case, the message passing and the
message counting variants are bisimilar. This proves the intuition that under-
lies the verification results from [22,23,25,27]. It explains why no spurious
counterexamples due to message-counting abstraction were experienced in the
experimental evaluation of the verification techniques from [22].

1 As we deal with distributed algorithms and timed automata, the notion of a clock
appears in two different contexts in this paper, which should not be confused: The
problem of clock synchronization is to compute adjustment for the hardware clocks
(oscillators). In the context of timed automata, clocks are special variables used to
model the timing behavior of a system.

64

350 I. Konnov et al.

Asynchronous Systems

Message sets Message counting

Message sets + time Message counting + time

Timed Systems

bisimulation (Thm. 3.4)

add clocks add clockstimed simulation equivalence (Cor. 5.10)

no timed/time-abstracting
bisimulation (Thm. 5.1)

Fig. 2. Relationship between different modeling choices.

– We obtain timed models by adding timing constraints on message delays that
restrict the message reception time depending on the sending times.

– We prove the surprising result that, in general, there is neither timed bisimu-
lation nor time-abstracting bisimulation between the message passing and the
message counting variants.

– Finally, we prove that there is timed simulation equivalence between the
message passing and the message counting variants. This paves a way for
abstraction-based model checking of timed distributed algorithms [35].

In the following section, we briefly recall the classic definitions of transition
systems, timed automata, and simulations [7,16]. However, the timed automata
defined there do not provide standard means to express processes that commu-
nicate via asynchronous message passing, as required for distributed algorithms.
As we are interested in timed automata that capture this structure, we first
define asynchronous message passing in Sect. 3 and then add timing constraints
in Sect. 4 via message sets and message counting.

2 Preliminaries

We recall the classic definitions to the extent necessary for our work, and add
two non-standard notions: First, our definition of a timed automaton assumes
partitioning of the set of clocks into two disjoint sets: the message clocks (used
to express the timing constraints of the message system underlying the distrib-
uted algorithm) and the specification clocks (used to express the specifications).
Second, we assume that clocks are “not ticking” before they are started (more
precisely, they are initialized to −∞).

We will use the following sets: the set of Boolean values B = {F,T}, the set
of natural numbers N = {1, 2, . . . }, the set N0 = N∪{0}, the set of non-negative
reals R≥0, and the set of time instants T := R≥0 ∪ {−∞}.

Transition Systems. Given a finite set AP of atomic propositions, a transition
system is a tuple TS = (S, S0, R, L) where S is a set of states, S0 ⊆ S are the
initial states, R ⊆ S × S is a transition relation, and L : S → 2AP is a labeling
function.

65

Accuracy of Message Counting Abstraction 351

Clocks. A clock is a variable that ranges over the set T. We call a clock that has
the value −∞ uninitialized. For a set X of clocks, a clock valuation is a function
ν : X → T. Given a clock valuation ν and a δ ∈ R≥0, we define ν + δ to be the
valuation ν′ such that ν′(c) = ν(c) + δ for c ∈ X (Note that −∞ + δ = −∞).
For a set Y ⊆ X and a clock valuation ν : X → T, we denote by ν[Y := 0] the
valuation ν′ such that ν′(c) = 0 for c ∈ Y ∩ X and ν′(c) = ν(c) for c ∈ X \ Y .
Given a set of clocks Z, the set of clock constraints Ψ(Z) is defined to contain
all expressions generated by the following grammar:

ζ := c ≤ a | c ≥ a | c < a | c > a | ζ ∧ ζ for c ∈ Z, a ∈ N0

Timed Automata. Given a set of atomic propositions AP and a finite transition
system (S, S0, R, L) over AP, which models discrete control of a system, we
model the system’s real-time behavior with a timed automaton, i.e., a tuple
TA = (S, S0, R, L,X ∪ U, I,E) with the following properties:

– The set X ∪ U is the disjoint union of the sets of message clocks X and
specification clocks U .

– The function I : S → Ψ(X ∪ U) is a state invariant, which assigns to each
discrete state a clock constraint over X ∪ U , which must hold in that state. We
denote by μ, ν |= I(s) that the clock valuations μ and ν satisfy the constraints
of I(s).

– E : R → Ψ(X ∪ U) × 2(X∪U) is a state switch relation that assigns to each
transition a guard on clock values and a (possibly empty) set of clocks that
must be reset to zero, when the transition takes place.

We assume that AP is disjoint from Ψ(X ∪ U). Thus, the discrete behavior does
not interfere with propositions on time. The semantics of a timed automaton TA =
(S, S0, R, L,X ∪ U, I,E) is an infinite transition system TS(TA) = (Q,Q0,Δ, λ)
over propositions AP ∪ Ψ(U) with the following properties [6]:

1. The set Q of states consists of triples (s, μ, ν), where s ∈ S is the discrete
component of the state, whereas μ : X → T and ν : U → T are valuations of
the message and specification clocks respectively such that μ, ν |= I(s).

2. The set Q0 ⊆ Q of initial states comprises triples (s0, μ0, ν0) with s0 ∈ S0,
and clocks are set to −∞, i.e., ∀c ∈ X. μ0(c) = −∞ and ∀c ∈ U. ν0(c) = −∞.

3. The transition relation Δ contains pairs ((s, μ, ν), (s′, μ′, ν′)) of two kinds of
transitions:
(a) A time step: s′ = s and μ′ = μ + δ, ν′ = ν + δ, for δ > 0, provided that

for all δ′ : 0 ≤ δ′ ≤ δ the invariant is preserved, i.e., μ+ δ′, ν + δ′ |= I(s).
(b) A discrete step: there is a transition (s, s′) ∈ R with (ϕ, Y) = E((s, s′))

whose guard ϕ is enabled, i.e., μ, ν |= ϕ, and the clocks from Y are reset,
i.e., μ′ = μ[Y ∩ X := 0], ν′ = ν[Y ∩ U := 0], provided that μ′, ν′ |= I(s).

Given a transition (q, q′) ∈ Δ, we write q
δ−→Δ q′ for a time step with delay

δ ∈ R≥0, or q →Δ q′ for a discrete step.
4. The labeling function λ : Q → 2AP∪Ψ(U) is defined as follows. For any state

q = (s, μ, ν), the labeling λ(q) = L(s) ∪ {ϕ ∈ Ψ(U) : μ, ν |= ϕ}.

66

352 I. Konnov et al.

Comparing System Behaviors. For transition systems TSi = (Si, S
0
i , Ri, Li)

for i ∈ {1, 2}, a relation H ⊆ S1 × S2 is a simulation, if (i) for each (s1, s2) ∈ H
the labels coincide L1(s1) = L2(s2), and (ii) for each transition (s1, t1) ∈ R1,
there is a transition (s2, t2) ∈ R2 such that (t1, t2) ∈ H. If, in addition, the set
H−1 = {(s2, s1) : (s1, s2) ∈ H} is also a simulation, then H is called bisimulation.

Further, if TA1 and TA2 are timed automata with TS(TAi) = (Qi, Q
0
i ,Δi, λi)

for i ∈ {1, 2}, then a simulation H ⊆ Q1 × Q2 is called timed simulation [29],
and a bisimulation B ⊆ Q1 × Q2 is called timed bisimulation [15].

For transition systems TSi = (Si, S
0
i , Ri, Li) for i ∈ {1, 2}, we say that a

simulation H ⊆ S1 × S2 is initial, if ∀s ∈ S0
1 ∃t ∈ S0

2 . (s, t) ∈ H. A bisimulation
B ⊆ S1 ×S2 is initial, if the simulations B and B−1 are initial. The same applies
to timed (bi-)simulations. Then, for i ∈ {1, 2}, we recall the standard preorders
and equivalences on a pair of transition systems TSi = (Si, S

0
i , Ri, Li), and on a

pair of timed automata TAi, where TS(TAi) = (Qi, Q
0
i ,Δi, λi):

1. TS1 ≈ TS2 (bisimilar), if there is an initial bisimulation B ⊆ S1 × S2.
2. TA1 �t TA2 (TA2 time-simulates TA1), if there is an initial timed simulation

H ⊆ Q1 × Q2.
3. TA1 ≈t TA2 (time-bisimilar), if there is an initial timed bisimulation B ⊆

Q1 × Q2.
4. TA1 �t TA2 (time-simulation equivalent), if TA1 �t TA2 and TA2 �t TA1.

Timed bisimulation forces time steps to advance clocks by the same amount
of time. A coarser relation — called time-abstracting bisimulation [37] — allows
two transition systems to advance clocks at “different speeds”. Given two
timed automata TAi, for i ∈ {1, 2} and the respective transition systems
TS(TAi) = (Qi, Q

0
i ,Δi, λi), a binary relation B ⊆ Q1 × Q2 is a time-abstracting

bisimulation [37], if the following holds for every pair (q1, q2) ∈ B:

1. The labels coincide: λ1(q1) = λ2(q2);
2. For all j and k such that {j, k} = {1, 2}, and each discrete step qj →Δj

rj ,
there is a discrete step qk →Δk

rk and (rj , rk) ∈ B;
3. For all j and k such that {j, k} = {1, 2}, a delay δ ∈ R≥0, and a time step

qj
δ−→Δj

rj , there is a delay δ′ ∈ R≥0 and a time step qk
δ′
−→Δk

rk such that
(rj , rk) ∈ B.

By substituting δ′ with δ, one obtains the definition of timed bisimulation.

3 Asynchronous Message Passing Systems

Timed automata as defined above neither capture processes nor communication
via messages, as would be required to model distributed algorithms. Hence we
now introduce these notions and then construct an asynchronous system using
processes and message passing (or message counting). We assume that at every
step a process receives and sends at most one message [19]. In Sect. 4, we add
time to this modeling in order to obtain a timed automaton.

67

Accuracy of Message Counting Abstraction 353

V1

V0

SE

AC

c1 c2

c3

c2

Fig. 3. A graphical representation of a
process discussed in Example 3.1

�0 �1
c4

c5

Fig. 4. A simple two-state process (used
later for Theorem 5.1)

Single Correct Process. We assume a (possibly infinite) set of control states L
and a subset L0 ⊆ L of initial control states. We fix a finite set MT of message
types. We assume that the control states in L keep track of the messages sent
by a process. Thus, L comes with a predicate is sent : L × MT → B, where
is sent(
,m) evaluates to true if and only if a message of type m has been sent
according to the control state
. Finally, we introduce a set Π of parameters and
store the parameter values in a vector p ∈ N0

|Π|. As noted in [22], parameter
values are typically restricted with a resilience condition such as n > 3t (less
than a third of the processes are faulty), so we will assume that there is a set of

all admissible combinations of parameter values PRC ⊆ N0
|Π|.

The behavior of a single process is defined as a process transition relation
T ⊆ L × N0

|Π| × N0
|MT| × L encoding transitions guarded by conditions on

message counters that range over N0
|MT|: when (
,p, c,
′) ∈ T , a process can

make a transition from the control state
 to the control state
′, provided that,
for every m ∈ MT, the number of received messages of type m is greater than
or equal to c(m) in a configuration with parameter values p.

Example 3.1. The process shown in Fig. 1 can be written in our definitions as
follows. The algorithm is using only one message type, and thus MT = {ECHO}.
We assume a set of control states L = {V0,V1,SE,AC}: V0 and V1 encode the
initial states where myval = 0 and myval = 1 respectively, pc = SE encodes the
status “ECHO sent before”, and pc = AC encodes the status “accept”. The initial
control states are: L0 = {V0,V1}. The transition relation contains four types
of transitions: tp1 = (V0,p, c1,SE), tp2 = (V0,p, c2,AC), tp3 = (V1,p, c3,SE),

and tp4 = (SE,p, c2,AC), for any p ∈ N0
|Π| and c1, c2, c3 satisfying the fol-

lowing: c1(ECHO) ≥ p(t) + 1, c2(ECHO) ≥ p(n) − p(t), and c3(ECHO) ≥ 0.
Finally, is sent(
,ECHO) iff
 ∈ {SE,AC}. A concise graphical representation of
the transition relation is given in Fig. 3. There, each edge represents multiple
transitions of the same type. Let us observe that while the action of sending
a message can be inferred by simply checking all the transitions going from a
state s to a state t such that ¬is sent(s) and is sent(t), the action of receiving an
individual message is not part of the process description at this level. However,
if a guarded transition is taken, this implies that a threshold has been reached,
e.g., in case of c1, at least t + 1 messages were received. �

68

354 I. Konnov et al.

Table 1. The message-passing and message-counting interpretations

Message passing (MP) Message counting (MC):

MsgMP
Δ
= MT × Proc MsgMC

Δ
= MT × {C, F}

MsgSetsMP
Δ
= 2MT×Proc MsgSetsMC

Δ
= {0, . . . , |Corr|}|MT|×{0, . . . , |Byz|}|MT|

Initial messages, init ∈ MsgSets

initMP
Δ
= ∅ initMC

Δ
= ((0, . . . , 0), (0, . . . , 0))

Count messages, card : MT × MsgSets → N0

cardMP(m, M)
Δ
= |{p ∈ Proc : (m, p) ∈ M}| cardMC(m, (cC, cF))

Δ
= cC(m) + cF(m)

Add a message, add : Msg × MsgSets → MsgSets

addMP(〈m, p〉 , M)
Δ
= M ∪ {〈m, p〉} addMC((m, tag), (cC, cF))

Δ
= (c′

C, c′
F) such that

c′
C(m) = cC(m) + 1 and c′

F(m) = cF(m), if tag = C

c′
F(m) = cF(m) + 1 and c′

C(m) = cC(m), if tag = F

and c′(m′) = c(m) for m′ ∈ MT, m′ �= m

Is there a message to deliver? inTransit : Msg × MsgSets × MsgSets → B
inTransitMP(〈m, p〉 , M, M′) Δ

= inTransitMC((m, tag), (cC, cF), (c
′
C, c′

F))
Δ
=

(p ∈ Corr ∧ 〈m, p〉 ∈ M′ \ M) ∨ (p ∈ Byz ∧ 〈m, p〉 �∈ M) (tag = C ∧ c′
C > cC) ∨ (tag = F ∧ cF < |Byz|)

We make two assumptions typical for distributed algorithms [19,35]:

A1 Processes do not forget that they have sent messages: If (
,p, c,
′) ∈ T ,
then is sent(
,m) → is sent(
′,m) for every m ∈ MT.

A2 At each step a process sends at most one message to all: If (
,p, c,
′) ∈ T and
¬is sent(
,m) ∧ is sent(
′,m) ∧ ¬is sent(
,m′) ∧ is sent(
′,m′) then m = m′.

Then, we call (MT,L,L0, T) a process template.

Asynchronous Message Passing and Counting in Presence of Byzan-
tine Faults. In this section we introduce two ways of modeling message passing:
by storing messages in sets, and by counting messages. As in [23], we do not
explicitly model Byzantine processes [32], but capture their effect on the correct
processes in the form of spurious messages. Although we do not discuss other
kinds of faults (e.g., crashes, symmetric faults, omission faults), it is not hard to
model other faults by following the modeling in [23].

We fix a set of processes Proc, which is typically defined as {1, . . . , n} for
n ≥ 1. Further, assume that there are two disjoint sets: the set Corr ⊆ Proc
of correct processes, and Byz ⊆ Proc of Byzantine processes (possibly empty),
with Byz ∪ Corr = Proc. Given a process template (MT,L,L0, T), we refer to
(MT,L,L0, T ,Corr,Byz) as a design. Note that a design does not capture how
processes interact with messages. To do so, in Table 1, we define message pass-
ing (MP) and message counting (MC) models as interpretations of the signature
(Msg ,MsgSets, init , card , add, inTransit), with the following informal meaning:

– Msg : the set of all messages that can be exchanged by the processes,
– MsgSets: collections of messages,
– init : the empty collection of messages,
– card : a function that counts messages of the given type,
– add: a function that adds a message to a collection of messages,

69

Accuracy of Message Counting Abstraction 355

– inTransit : a function that checks whether a message is in transit and thus can
be received.

Transition Systems. Fix interpretations (MsgI ,MsgSetsI , initI , cardI , addI ,
inTransitI) for I ∈ {MP ,MC}. Then, we define a transition system TSI = (SI ,
SI

0 , RI , LI) of processes from Proc that communicate with respect to interpreta-
tion I. We call message-passing system the transition system obtained using the
interpretation MP, and message-counting system the transition system obtained
using the interpretation MC.

The set SI contains configurations, i.e., tuples (p, pc, rcvd, sent) having the

following properties: (a) p ∈ N0
|Π|, (b) pc : Corr → L, (c) rcvd : Corr →

MsgSetsI , and (d) sent ∈ MsgSetsI . In a configuration, for every process p ∈ Corr,
the values pc(p) and rcvd(p) comprise the local view of the process p, while the
components sent and p comprise the shared state of the distributed system.
A configuration σ ∈ SI belongs to the set SI

0 of initial configurations, if for
each process p ∈ Corr, it holds that: (a) σ.pc(p) ∈ L0, (b) σ.rcvd(p) = initI ,
(c) σ.sent = initI , and (d) σ.p ∈ PRC .

Definition 3.2. The transition relation RI contains a pair of configurations
(σ, σ′) ∈ SI × SI , if there is a correct process p ∈ Corr that satisfies:

1. There exists a local transition (
,p, c,
′) ∈ T satisfying σ.pc(p) =
 and
σ′.pc(p) =
′ and for all m in MT, c(m) = cardI(m,σ′.rcvd(p)). Also, it is
required that σ.p = σ′.p = p.

2. Messages are received and sent according to the signature:
(a) Process p receives no message: σ′.rcvd(p) = σ.rcvd(p), or there is a

message in transit in σ that is received in σ′, i.e., there is a message
msg ∈ MsgI satisfying:
inTransitI(msg , σ.rcvd(p), σ.sent) ∧ σ′.rcvd(p) = addI(msg , σ.rcvd(p)).

(b) The shared variable sent is changed iff process p sends a message, that
is, σ′.sent = addI(msg , σ.sent), if and only if ¬is sent(σ.pc(p),m) and
is sent(σ′.pc(p),m), for every m ∈ MT and msg ∈ MsgI of type m.

3. The processes different from p do not change their local states:
σ′.pc(q) = σ.pc(q) and σ′.rcvd(q) = σ.rcvd(q) for q ∈ Corr \ {p}.

The labeling function LI : SI → L|Corr| ×
(
N0

|MT|
)|Corr|

labels each con-

figuration σ ∈ SI with the vector of control states and message counters, i.e.,
LI(σ) = ((
1, . . . ,
|Corr|), (c1, . . . , c|Corr|)) such that
p = σ.pc(p) and cp(m) =
cardI(m,σ.rcvd(p)) for p ∈ Corr, m ∈ MT. (For simplicity we use the convention
that Corr = {1, . . . j}, for some j ∈ N.) Note that LI labels a configuration with
the process control states and the number of messages received by each process.

The message-passing transition systems have the following features. The mes-
sages sent by correct processes are stored in the shared set sent. In this modeling,
the messages from Byzantine processes are not stored in sent explicitly, but can
be received at any step. Each correct process p ∈ Corr stores received messages

70

356 I. Konnov et al.

in its local set rcvd(p), whose elements originate from the messages stored in the
set sent or from Byzantine processes.

The message-counting transition systems have the following features. Mes-
sages are not stored explicitly, but are only counted. We maintain two vectors
of counters: (i) representing the number of messages that originate from correct
processes (these messages have the tag C), and (ii) representing the number of
messages that originate from faulty processes (these messages have the tag F).
Each correct process p ∈ Corr keeps two such vectors of counters cC and cF in its
local variable rcvd(p). In the following, we refer to cC and cF using the notation
[rcvd(p)]C and [rcvd(p)]F. The number of sent messages is also stored as a pair of
vectors [sent]C and [sent]F. By the definition of the transition relation RMC, the
vector [sent]F is always equal to the zero vector, whereas the correct process p
can increment its counter [rcvd(p)]F, if [rcvd(p)]F(m) < |Byz|, for every m ∈ MT.

To prove bisimulation between a message-passing system and a message-
counting system —built from the same design — we introduce the following rela-
tion on the configurations of both systems:

Definition 3.3. Let H# ⊆ SMP × SMC such that (σ, σ#) ∈ H# if for all
processes p ∈ Corr and message types m ∈ MT:

1. σ#.pc(p) = σ.pc(p)
2. σ#.[rcvd(p)]C(m) = |{q ∈ Corr : 〈m, q〉 ∈ σ.rcvd(p)}|
3. σ#.[rcvd(p)]F(m) = |{q ∈ Byz : 〈m, q〉 ∈ σ.rcvd(p)}|
4. σ#.[sent]C(m) = |{q ∈ Corr : 〈m, q〉 ∈ σ.sent}|
5. σ#.[sent]F(m) = 0
6. {q ∈ Proc : 〈m, q〉 ∈ σ.sent} ⊆ Corr
7. σ.rcvd(p) ⊆ σ.sent ∪ {〈m, q〉 : m ∈ MT, q ∈ Byz}
8. is sent(σ.pc(p),m) ↔ 〈m, p〉 ∈ σ.sent

Theorem 3.4. For a message-passing system TSMP and a message-counting
system TSMC defined over the same design, H# is a bisimulation.

The key argument to prove the Theorem 3.4 is that given a message counting
state σ#, if a step increases a counter rcvd(p), in the message passing system this
transition can be mirrored by receiving an arbitrary message in transit. In fact,
in both systems, once a message is sent it can be received at any future step. We
will see that in the timed version this argument does not work anymore, due to
the restricted time interval in which a message must be received.

4 Messages with Time Constraints

We now add time constraints to both, message-passing systems and message-
counting systems. Following the definitions from distributed algorithms [35,40],
we assume that every message is delivered within a predefined time bound, that
is, not earlier than τ− time units and not later than τ+ times units since the
instant it was sent, with 0 ≤ τ− ≤ τ+. We use naturals for τ− and τ+ for
consistency with the literature on timed automata.

71

Accuracy of Message Counting Abstraction 357

As can be seen from Sect. 2, to define a timed automaton, one has to provide
an invariant and a switch relation. In the following, we fix the invariants and
switch relations with respect to the timing constraints τ− and τ+ on messages.
However, the specifications of distributed algorithms may refer to time, e.g., “If
a correct process accepts the message (round k) at time t, then every correct
process does so by time t + tdel” [35]. Therefore, we assume that a specification
invariant (or user invariant) IU : 2AP → Ψ(U) and a specification switch relation
(or user switch relation) EU : 2AP × 2AP → Ψ(U) × 2U are given as input. Then,
we will refer to the tuple (L,L0, T ,Proc, IU , EU) as a timed design and we will
assume that a timed design is fixed in the following.

Using a timed design, we will use message-passing and message-counting
systems to derive two timed automata. For a message of type m sent by a
correct process p, the message-passing system uses a clock c 〈m, p〉 to store the
delay since the message 〈m, p〉 was sent. The message-counting system stores
the delay since the ith message of type m was sent, for all i and m. Both timed
automata specify an invariant to constrain the time required to deliver a message.

Definition 4.1 (Message-passing timed automaton). Given a message-
passing system TSMP = (SMP, SMP

0 , RMP, LMP) defined over a timed system
design (L,L0, T ,Proc, IU , EU), we say that a timed automaton TAMP = (SMP,
SMP

0 , RMP, LMP, U ∪ XMP, IMP, EMP) is a message-passing timed automaton, if
it has the following properties:

1. There is one clock per message that can be sent by a correct process: XMP =
{c 〈m, p〉 : m ∈ MT, p ∈ Corr}.

2. For each discrete transition (σ, σ′) ∈ RMP, the state switch relation EMP(σ, σ′)
ensures the specification invariant and resets the given specification clocks and
the clocks corresponding to the message sent in transition (σ, σ′). That is, if
(ϕU , YU) is the guard, and specification clocks are in EU (LMP(σ), LMP(σ′)),
then EMP(σ, σ′) = (ϕU , YU ∪ {c 〈m, p〉 : 〈m, p〉 ∈ σ′.sent \ σ.sent}).

3. Each state σ ∈ SMP has the invariant IMP(σ) = IU (LMP(σ)) ∧ ϕ−
MP ∧ ϕ+

MP

composed of:
(a) the specification invariant IU (LMP(σ));
(b) the lower bound on the age of received messages:

ϕ−
MP =

∧
〈m,p〉∈M c 〈m, p〉 ≥ τ− for M = {〈m, p〉 ∈ MT × Corr : ∃q ∈

Corr. 〈m, p〉 ∈ σ.rcvd(q)}; and
(c) the upper bound on the age of messages that are in transit: ϕ+

MP =∧
(m,p)∈M 0 ≤ c 〈m, p〉 ≤ τ+ for M = {〈m, p〉 ∈ MT × Corr : 〈m, p〉 ∈

σ.sent \ ⋂
q∈Corr σ.rcvd(q)}.

Definition 4.2 (Message-counting timed automaton). Given a message-
counting system TSMC = (SMC, SMC

0 , RMC, LMC) defined over a timed design (L,
L0, T ,Proc, IU , EU), we say that a timed automaton TAMC = (SMC, SMC

0 , RMC,
LMC, U ∪ XMC, IMC, EMC) is a message-counting timed automaton, if it has the
following properties:

1. There is one clock per message type and number of messages sent. That is,
XMC = {c 〈m, i〉 : m ∈ MT, 1 ≤ i ≤ |Corr|}.

72

358 I. Konnov et al.

2. For each discrete transition (σ, σ′) ∈ RMC, the state switch relation EMC(σ, σ′)
ensures the specification invariant and resets the given specification clocks
and the clocks corresponding to message counters updated by (σ, σ′). That is,
if (ϕU , YU) = EU (LMC(σ), LMC(σ′)), then the switch relation EMC(σ, σ′) is
(ϕU , YU ∪ {c 〈m, k〉 : m ∈ MT, k = σ′.sent(m) = σ.sent(m) + 1}).

3. Each state σ ∈ SMC has the invariant IMC(σ) = IU (LMC(σ)) ∧ ϕ−
MC ∧ ϕ+

MC

composed of:

(a) the specification invariant IU (LMC(σ));
(b) ϕ−

MC =
∧

m∈MT a(m) > 0 → c 〈m,a(m)〉 ≥ τ− for the numbers a(m) =
maxp∈Corr[σ.rcvd(p)(m)]C. If a correct process has received a(m) messages
of type m from correct processes, then the a(m)-th message of type m, for
every m ∈ MT, was sent at least τ− time units earlier.

(c) ϕ+
MC =

∧
m∈MT

∧
b(m)<j≤σ.sent(m) 0 ≤ c 〈m, j〉 ≤ τ+ for the numbers

b(m) = minp∈Corr[σ.rcvd(p)(m)]C. If there is a correct process that has
received b(m) messages of type m from correct processes, then for every
number of messages j > b(m), the respective clock is bounded by τ+.

While the number of employed clocks is the same, the latter model is “more
abstract”: by forgetting the identity of the sender, indeed, several configurations
of the message-passing timed automaton can be mapped on the same configura-
tion of the message-counting timed automaton.

5 Precision of Message Counting with Time Constraints

While Theorem 3.4 establishes a strong equivalence — that is, a bisimulation rela-
tion —between message-passing transition systems, we will show in Theorem 5.1
that message-passing timed automata and message-counting timed automata are
not necessarily equivalent in the sense of timed bisimulation. Remarkably, such
automata are also not necessarily equivalent in the sense of time-abstracting
bisimulation. These results show an upper bound on the degree of precision
achievable by model checking of timed properties of FTDAs by counting mes-
sages. Nevertheless, we show that such automata simulate each other, and thus
they satisfy the same ATCTL formulas (Corollarys 5.10 and 6.2).

Theorem 5.1. There exists a timed design whose message-passing timed
automatonTAMP and message-counting timed automaton TAMC satisfy:

1. There is no initial timed bisimulation between TAMP and TAMC.
2. There is no initial time-abstracting bisimulation between TAMP and TAMC.

Proof (sketch). We give an example of a timed design proving Point 2. Since
timed bisimulation is a special case of time-abstracting bisimulation, this exam-
ple also proves Point 1.

We use the process template shown in Fig. 4 on page 7. Formally, this tem-
plate is defined as follows: there is one parameter, i.e., Π = {n}, one message
type, i.e., MT = {M}, and two control states, i.e., L = {
0,
1}. There are two

73

Accuracy of Message Counting Abstraction 359

q0 q1 q2 q3 q4 q5 q6

q7 q8

q′′
7 q′′

8

r0 r1 r4 r5 r6r2 r3 r7 r8

1! 〈M, 1〉 2! 〈M, 2〉 2? 〈M, 1〉 2? 〈M, 2〉τ− τ− 1?
〈M, 1〉

1? 〈M, 2〉

τ−

δ4

sent++ sent++ rcvd(2)++rcvd(2)++δ1 δ2 rcvd(1)++ δ3

Fig. 5. Two runs of TAMP (above) and one run of TAMC (below) that violate time-
abstracting bisimulation when τ+ = 2τ−. Circles and edges illustrate states and tran-
sitions. Edge labels are as follows: τ− or δi designate a time step with the respective
delay; i! 〈M, j〉 and i? 〈M, j〉 designate send and receive of a message 〈M, j〉 by process i
in the message-passing system; sent++ and rcvd(i)++ designate send and receive of a
message M by some process and process i respectively.

types of transitions: tp1 = (
0,p, c4,
1) and tp2 = (
1,p, c5,
1). The conditions c4

and c5 require that c4(M) = 0 and c5(M) ≥ 0 respectively. Every process sends
a message of type M when going from
0 to
1, i.e., is sent(
,M) = T iff
 =
1.
Then the processes self-loop in the control state
1 (by doing so, they can receive
messages from the other processes).

Consider the system of two correct processes and no Byzantine processes,
that is, Corr = {1, 2} and Byz = ∅. We fix the upper bound on message delays to
be τ+ = 2τ− > 0. For the sake of this proof, we set U = ∅, and thus IU and EU

are defined trivially. Together, these constraints define a timed design.
Figure 5 illustrates two runs of a TAMP and a run of TAMC that should be

matched by a time-abstracting bisimulation, if one exists. We show by contra-
diction that no such relation exists. Note that the message 〈M, 1〉 has been
received by all processes at the timed state q7 and has not been received by
the first process at the timed state q′′

7 . Thus the timed state q7 admits a time
step, while the timed state q′′

7 does not. Indeed, on one hand, the timed automa-
ton TAMP can advance the clocks by at most τ+−τ− = τ− time units in q7 before
the clock attached to the message 〈M, 2〉 expires; on the other hand, in q′′

7 , the
timed automaton TAMP cannot advance the clocks before the clock attached to
the message 〈M, 1〉 expires. However, both states must be time-abstract related
to the state r7 of TAMC, because they both received the same number of mes-
sages of type M and thus their labels coincide, from which we derive the required
contradiction. Hence, proving that there is no time-abstracting bisimulation. ��

From Theorem 5.1, it follows that message counting abstraction is not precise
enough to preserve an equivalence relation as strong as bisimulation. However, for
abstraction-based model checking a coarser relation, namely, timed-simulation
equivalence, would be sufficient. In one direction, timed-simulation is easy: a
discrete configuration of a message-passing timed automaton can be mapped
to the configuration of the message-counting timed automaton by just counting

74

360 I. Konnov et al.

instant t1

instant t2

instant t3

1 2 3

1! 〈M, 1〉
2! 〈M, 2〉

3? 〈M, 2〉 τ+

1 2 3

1! 〈M, 1〉
2! 〈M, 2〉

3? 〈M, 1〉
τ+

Fig. 6. Receiving messages in order relaxes constraints of delay transitions

the messages for each message type, while the clocks assignments are kept the
same. The other direction is harder: A first approach would be to map a con-
figuration of a message-counting timed automaton to all the configurations of
the message-passing timed automaton, where the message counters are equal to
the cardinalities of the sets of received messages. This mapping is problematic
because of the interplay of message re-ordering and timing constraints:

Example 5.2 Figure 6 exemplifies a problematic behavior that originates from
the interplay of message re-ordering and timing constraints on message delays.
In the figure we see the space-time diagram of two timed message passing runs,
where first process 1 sends 〈M, 1〉 at instant t1, and then process 2 sends 〈M, 2〉
at a later time t2 > t1. In the run on the left, process 3 receives 〈M, 2〉 at
instant t3 and has not received 〈M, 1〉 before. In the run on the right process 3
receives 〈M, 1〉 at instant t3. Hence, at t3 on the left 〈M, 1〉 is in transit, while
on the right 〈M, 2〉 is in transit, which has been sent after 〈M, 1〉. As indicated
by the τ+ intervals, due to the invariants from Definition 4.1[3c], the left run is
more restricted: On the left within one time step the clocks can be advanced
by τ+ − (t3 − t1) while on the right the clocks can advance further, namely,
by τ+ − (t3 − t2) > τ+ − (t3 − t1). Message counting timed automata abstract
away the origin of the messages, and intuitively, relate the sending of the ith
message to the reception of i messages, which correspond to runs where messages
are received “in order”, like in the run on the right. We shall formalize this
below. �

In the following, we exclude from the simulation relation those states where
an in-transit message has been sent before a received one, and only consider
so-called well-formed states where the messages are received in the chronological
order of the sending (according to the clocks of timed automata). Indeed, we use
the fact that the timing constraints of well-formed states in the message-passing
system match the timing constraints in the message-counting system.

Definition 5.3 (Well-formed state). For a message-passing timed automaton
TAMP with TS(TAMP) = (Q,Q0,Δ, λ), a state (s, μ, ν) ∈ Q is well-formed, if for

75

Accuracy of Message Counting Abstraction 361

each message type m ∈ MT, each process p ∈ Corr that has received a message
〈m, p′〉 has also received all messages of type m sent earlier than 〈m, p′〉:

〈m, p′〉 ∈ s.rcvd(p) ∧ μ(c 〈m, p′′〉) > μ(c 〈m, p′〉) (1)

→ 〈m, p′′〉 ∈ s.rcvd(p) for p′, p′′ ∈ Corr

Observe that because messages can be sent at precisely the same time, there
can be different well-formed states s and s′ with s.rcvd(p) �= s′.rcvd(p). Also,
considering only well-formed states does not imply that the messages are received
according to the sending order in a run (which would correspond to FIFO).

We will use a mapping WF to abstract arbitrary states of any message passing
timed automaton to sets of well-formed states in the same automaton.

Definition 5.4 Given a message-passing timed automaton TAMP with the tran-
sition system TS(TAMP) = (Q,Q0,Δ, λ), we define a mapping WF : Q → 2Q

that maps an automaton state (s, μ, ν) ∈ Q into a set of well-formed states with
each (s′, μ′, ν′) ∈ WF((s, μ, ν)) having the following properties:

1. μ′ = μ, ν′ = ν, s′.sent = s.sent, and s.pc(p) = s′.pc(p) for p ∈ Corr, and
2. |{q : 〈m, q〉 ∈ s′.rcvd(p)}| = |{q : 〈m, q〉 ∈ s.rcvd(p)}| for m ∈ MT, p ∈ Corr.

One can show that every timed state q ∈ Q has at least one state in WF(q):

Proposition 5.5. Let TAMP be a message-passing timed automaton, and
TS(TAMP) = (Q,Q0,Δ, λ). For every state q ∈ Q, the set WF(q) is not empty.

Using Proposition 5.5, one can show that the well-defined states simulate all
the timed states of a message-passing timed automaton:

Theorem 5.6. If TAMP is a message-passing timed automaton, and if
TS(TAMP) = (Q,Q0,Δ, λ), then {(q, r) : q ∈ Q, r ∈ WF(q)} is an initial timed
simulation.

Theorem 5.6 suggests that timed automata restricted to well-formed states
might help us in avoiding the negative result of Theorem5.1. To this end, we
introduce a well-formed message-passing timed automaton. Before that, we note
that Eq. (1) of Definition 5.3 can be transformed to a state invariant. We denote
such a state invariant as IWF.

Definition 5.7 (Well-formed MPTA). Given a message-passing timed
automaton TAMP = (S, S0, R, L, U ∪ X, I,E), its well-formed restriction TAMP

WF

is the timed automaton (S, S0, R, L, U ∪ X, I ∧ IWF, E).

Since the well-formed states are included in the set of timed states, and the
well-formed states simulate timed states (Theorem 5.6), we obtain the following:

Corollary 5.8. Let TAMP be a message-passing timed automaton and TAMP
WF be

its well-formed restriction. These timed automata are timed-simulation equiva-
lent: TAMP �t TAMP

WF.

76

362 I. Konnov et al.

states of a message-passing automaton

well-formed states

states of a message-counting automaton

Theorem 5.6

Corollary 5.8

Corollary 5.10

Fig. 7. Simulations constructed in Theorems 5.6–5.10. Small circles depict states of
the transition systems. An arrow from a state s to a state t illustrates that the pair
(s, t) belongs to a timed simulation

As a consequence of Theorems 3.4, 5.6, and Corollary 5.8, one obtains that
there is a timed bisimulation equivalence between a well-formed message-passing
timed automaton and the corresponding message-counting timed automaton,
which is obtained by forgetting the sender of the messages and just counting the
sent and delivered messages.

Theorem 5.9. Let TAMP be a message-passing timed automaton and TAMC be
a message-counting timed automaton defined over the same timed system design.
Further, let TAMP

WF be the well-formed restriction of TAMP. There exists an initial
timed bisimulation: TAMP

WF ≈t TAMC.

By collecting Theorem 5.9 and Corollary 5.8 we conclude that there is a timed
simulation equivalence between MPTA and MCTA:

Corollary 5.10. Let TAMP be a message-passing timed automaton and TAMC be
a message-counting timed automaton defined over the same timed system design.
TAMP and TAMC are timed-simulation equivalent: TAMP �t TAMC.

Figure 7 uses arrows to depict the timed simulations presented in this work.

6 Conclusions

Asynchronous Systems. For systems considered in Sect. 3, we conclude from
Theorem 3.4 that message-counting systems are detailed enough for model check-
ing of properties written in CTL∗:

Corollary 6.1. For a CTL� formula ϕ, a message-passing system TSMP and a
message-counting system TSMC defined over the same design, TSMP |= ϕ if and
only if TSMC |= ϕ.

The corollary implies that the message counting abstraction does not intro-
duce spurious behavior. In contrast, data and counter abstractions introduced
in [22] may lead to spurious behavior as only simulation relations have been
shown for these abstractions.

77

Accuracy of Message Counting Abstraction 363

Timed Systems. For systems considered in Sect. 4, we consider specifications
in the temporal logic ATCTL [14], which restricts TCTL [6] as follows: first,
negations only appear next to propositions p ∈ AP ∪ Ψ(U), and second, the
temporal operators are restricted to AF ∼c, AG ∼c, and A U ∼c.

To derive that message-counting timed automata are sufficiently precise for
model checking of ATCTL formulas (in the following corollary), we combine the
following results: (i) Simulation-equivalent systems satisfy the same formulas
of ACTL, e.g. see [11, Theorem 7.76]; (ii) Reduction of TCTL model checking
to CTL model checking by clock embedding [11, p. 706]; (iii) Corollary 5.10.

Corollary 6.2. For a message-passing timed automaton TAMP and a message-
counting timed automaton TAMC defined over the same timed design and an
ATCTL-formula ϕ, the following holds: TAMP |= ϕ if and only if TAMC |= ϕ.

Future Work. Most of the timed specifications of interest for FTDAs (e.g.,
fault-tolerant clock synchronization algorithms [35,39,40]) are examples of time-
bounded specifications, thus belonging to the class of timed safety specifica-
tions. These algorithms can be encoded as message-passing timed automata
(Definition 4.1). In this paper, we have shown that model checking of these
algorithms can also be done at the level of message-counting timed automata
(Definition 4.2). Based on this it appears natural to apply the abstraction-based
parameterized model checking technique from [22]. However, we are still facing
the challenge of having a parameterized number of clocks in Definition 4.2. We
are currently working on another abstraction that addresses this issue. This will
eventually allow us to do parameterized model checking of timed fault-tolerant
distributed algorithms using UPPAAL [12] as back-end model checker.

Related Work. As discussed in [23], while modeling message passing is natural
for fault-tolerant distributed algorithms (FTDAs), message counting scales bet-
ter for asynchronous systems, and also builds a basis for efficient parameterized
model checking techniques [22,28]. We are interested in corresponding results for
timed systems, that is, our long-term research goal is to build a framework for
the automatic verification of timed properties of FTDAs. Such kind of properties
are particularly relevant for the analysis of distributed clock synchronization pro-
tocols [35,39,40]. This investigation combines two research areas: (i) verification
of FTDAs and (ii) parameterized model checking (PMC) of timed systems.

To the best of our knowledge, most of the existing literature on (i) can model
only the discrete behaviors of the algorithms themselves [4,5,18,20,22,28,38].
Consequently they can neither reason about nor verify their timed properties.
This motivated us to extend existing techniques for modeling and abstracting
FTDAs, such as message passing and message counting systems together with
the message counting abstraction, to timed systems.

Most of the results about PMC of timed systems [1–3,8–10,31,34] are
restricted to systems whose interprocess communication primitives have other
systems in mind than FTDAs. For instance, the local state space is fixed and
finite and independent of the parameters, while message counting in FTDAs

78

364 I. Konnov et al.

requires that the local state space depends on the parameters. This motivated us
to introduce the notions of message passing timed automata and message count-
ing timed automata. Besides, the literature typically focuses on decidability, e.g.,
[1,3,9,34] analyze decidability for different variants of the parameterized model
checking problem (e.g., integer vs. continuous time, safety vs. liveness, presence
vs. absence of controller). Our work focuses on establishing relations between dif-
ferent timed models, with the goal of using these relations for abstraction-based
model checking.

References

1. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: LICS, pp.
345–354 (2004)

2. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 28

3. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theor. Comput. Sci. 290(1), 241–264 (2003)

4. Alberti, F., Ghilardi, S., Orsini, A., Pagani, E.: Counter abstractions in model
checking of distributed broadcast algorithms: some case studies. In: CILC, pp.
102–117 (2016)

5. Alberti, F., Ghilardi, S., Pagani, E.: Counting constraints in flat array fragments.
In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 65–81.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-40229-1 6

6. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
LICS, pp. 414–425 (1990)

7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

8. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44584-6 9

9. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed
networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47666-6 30

10. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols
with fairness. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol.
9583, pp. 476–494. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5 23

11. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Massachusetts
(2008)

12. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST, pp. 125–126 (2006)

13. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

14. Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm
for checking alternating timed simulation. In: Ouaknine, J., Vaandrager, F.W.
(eds.) FORMATS 2009. LNCS, vol. 5813, pp. 73–87. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04368-0 8

79

Accuracy of Message Counting Abstraction 365

15. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). doi:10.1007/3-540-56496-9 24

16. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Massachusetts
(1999)

17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

18. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54013-4 10

19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

20. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed
protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 315–331. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3 22

21. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and
systems-on-chip. Distrib. Comput. 24(6), 323–355 (2012)

22. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp.
201–209 (2013)

23. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards model-
ing and model checking fault-tolerant distributed algorithms. In: Bartocci, E.,
Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 209–226. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39176-7 14

24. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Morgan & Claypool Publishers, San Rafael (2006)

25. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL
2017. (to appear, preliminary version at arXiv:1608.05327)

26. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. In: Baldan, P., Gorla, D.
(eds.) CONCUR 2014. LNCS, vol. 8704, pp. 125–140. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44584-6 10

27. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction:
parameterized model checking of threshold-based distributed algorithms. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102.
Springer,
Heidelberg (2015). doi:10.1007/978-3-319-21690-4 6

28. Konnov, I., Veith, H., Widder, J.: What you always wanted to know about model
checking of fault-tolerant distributed algorithms. In: Mazzara, M., Voronkov, A.
(eds.) PSI 2015. LNCS, vol. 9609, pp. 6–21. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-41579-6 2

29. Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based
systems. In: Bakker, J.W., Huizing, C., Roever, W.P., Rozenberg, G. (eds.) REX
1991. LNCS, vol. 600, pp. 397–446. Springer, Heidelberg (1992). doi:10.1007/
BFb0032002

30. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541–550 (2003)

80

366 I. Konnov et al.

31. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 496–514. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 29

32. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

33. Song, Y.J., Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87779-0 30

34. Spalazzi, L., Spegni, F.: Parameterized model-checking of timed systems with
conjunctive guards. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE
2014. LNCS, vol. 8471, pp. 235–251. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12154-3 15

35. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645
(1987)

36. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distrib. Comput. 2, 80–94 (1987)

37. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. FMSD 18, 25–68 (2001)

38. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms using satisfiability
solving. Distrib. Comput. 23(5–6), 341–358 (2011)

39. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distrib. Comput. 20(2), 115–140
(2007)

40. Widder, J., Schmid, U.: The theta-model: achieving synchrony without clocks.
Distrib. Comput. 22(1), 29–47 (2009)

81

82

Chapter 3

Parameterized model checking of fault-tolerant

distributed algorithms by abstraction

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder.
Parameterized model checking of fault-tolerant distributed algorithms by
abstraction. FMCAD, pp. 201–209, 2013.

doi: http://dx.doi.org/10.1109/FMCAD.2013.6679411

83

http://dx.doi.org/10.1109/FMCAD.2013.6679411

Parameterized Model Checking of Fault-tolerant
Distributed Algorithms by Abstraction

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, Josef Widder
Vienna University of Technology (TU Wien)

Abstract—We introduce an automated parameterized verifica-
tion method for fault-tolerant distributed algorithms (FTDA).
FTDAs are parameterized by both the number of processes and
the assumed maximum number of faults. At the center of our
technique is a parametric interval abstraction (PIA) where the
interval boundaries are arithmetic expressions over parameters.
Using PIA for both data abstraction and a new form of counter
abstraction, we reduce the parameterized problem to finite-state
model checking. We demonstrate the practical feasibility of our
method by verifying safety and liveness of several fault-tolerant
broadcasting algorithms, and finding counter examples in the case
where there are more faults than the FTDA was designed for.

I. INTRODUCTION

Fault-tolerant distributed algorithms (FTDA) constitute a
core topic of distributed algorithm theory, with a rich body
of results [27], [2]. Yet, they have not been systematically
studied from a model checking point of view. For FTDAs
one typically considers systems of n processes out of which
at most t may be faulty. In this paper we consider various
faults such as crash faults, omissions, and Byzantine faults. As
FTDAs are parameterized in n and t, we require parameterized
verification to establish the correctness of an FTDA. The
pragmatic approach to verify a system of fixed size is not
practical, as only very small instances can be verified due
to state space explosion [24], [36], [34]. While in classic
parameterized model checking the number of processes n is
the sole parameter, for FTDAs, t is also a parameter, and is
essentially a fraction of n, expressed by a resilience condition,
e.g., n > 3t. Thus, one has to reason about all runs with n�f
non-faulty and f faulty processes, where f t and n > 3t.

From an operational viewpoint, FTDAs typically consist of
multiple processes that communicate by passing messages. As
senders can be faulty, a receiver cannot wait for a message
from a specific sender process. Thus, most FTDAs use counters
to reason about the environment; e.g., if a process receives a
certain message from more than t distinct senders, then one
of the senders must be non-faulty. A large class of FTDAs
expresses these counting arguments using threshold guards:

if received <m> from t+1 distinct processes
then action(m);

Threshold guards generalize existential and universal guards
[16], i.e., rules that wait for messages from at least one or

Supported by the Austrian National Research Network S11403 and S11405
(RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) grants PROSEED, ICT12-059, and VRG11-005.
Details that had to be omitted from this paper can be found in [23].

all processes, respectively. As can be seen from the above
example, and as discussed in [24], existential and universal
guards are not sufficient to capture advanced FTDAs: Thresh-
old guards are a basic building block that has been used in
various environments (various degrees of synchrony, fault as-
sumptions, etc.) and FTDAs, such as consensus [15], software
and hardware clock synchronization [32], [19], approximate
agreement [14], and k-set agreement [13]. The ability to
efficiently reason about these guards is thus a keystone for
automated parameterized verification of such algorithms.

This paper considers parameterized verification of FTDAs
with threshold guards and resilience conditions. We introduce
a framework based on a new form of control flow automata
that captures the semantics of threshold-guarded FTDAs, and
propose a novel two-step abstraction technique. It is based
on parametric interval abstraction (PIA), a generalization of
interval abstraction where the interval borders are expressions
over parameters rather than constants. Using the PIA domain,
we obtain a finite-state model checking problem in two steps:
Step 1: PIA data abstraction. We evaluate the threshold
guards over the parametric intervals. Thus, we abstract away
unbounded variables and parameters from the process code.
We obtain a parameterized system where the replicated pro-
cesses are finite-state and independent of the parameters.
Step 2: PIA counter abstraction. We use a new form of
counter abstraction where the process counters are abstracted
to PIA. As Step 1 guarantees that we need only finitely many
counters, PIA counter abstraction yields a finite-state system.

To evaluate the precision of our abstractions, we im-
plemented our abstraction technique in a tool chain, and
conducted experiments on several FTDAs. Our experiments
showed the need for abstraction refinement to deal with
spurious counterexamples [7] that are due to parameterized
abstraction and fairness. This required novel refinement tech-
niques, which we also discuss in this paper. In addition to
refinement of PIA counter abstraction, which is automated in
a loop using a model checker and an SMT solver, we are
also exploiting simple user-provided invariant candidates (as
in [28], [35]) to refine the abstraction.

We verify several FTDAs that have been derived from
the well-known distributed broadcast algorithm by Srikanth
and Toueg [32], [33], and a folklore reliable broadcasting
algorithm [2, Sect. 8.2.5.1]. Each of these FTDAs tolerates
different faults (e.g., crash, omission, Byzantine), and uses
different threshold guards. To the best of our knowledge, we
are the first to achieve parameterized automated verification of
Byzantine FTDAs.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 184201ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

84

qI

q1

q2

q3

q4

sv = V1

sv 6= V1^
nsnt0 = nsnt^
sv0 = sv

nsnt0 = nsnt + 1

sv0 = SE

q5

q6

q7

q8

q9
qF

rcvd rcvd0 ^ rcvd0 nsnt + f

(t + 1 > rcvd0)^
sv0 = sv0 ^
nsnt0 = nsnt0

t + 1 rcvd0

sv0 = V0

sv0 6= V0^
nsnt0 = nsnt0

nsnt0 = nsnt0 + 1

n� t > rcvd0

n� t rcvd0

sv0 = SE

sv0 = AC

Fig. 1. CFA of our case study for
Byzantine faults.

qI

q1

q2q3

q4

q5

qF

rcvd rcvd0 ^
rcvd0 nsnt + nsntf

sv = V1sv = V0

sv = AC

sv = CR

1 > rcvd0

1 rcvd0

sv0 = CR

nsntf 0 =
nsntf + 1

sv0 = AC

nsnt0 =
nsnt + 1

Fig. 2. CFA of FTDA from [18]
(if x0 is not assigned, then x0 = x).

II. OUR APPROACH AT A GLANCE

To give an intuition of our method, we start with the control
flow automaton (CFA) given in Figure 1 that formalizes our
case study FTDA. The CFA uses the shared integer variable
nsnt (capturing the number of messages sent by non-faulty
processes), the local integer variable rcvd (storing the number
of messages received by the process so far), and the local status
variable sv, which ranges over a finite domain (capturing the
local progress w.r.t. the FTDA). In [24] we show that this
formalization captures the logic of our case study FTDA.

We use the CFA to represent one atomic step of the FTDA:
Each edge is labeled with a guard. A path from qI to qF

induces a conjunction of all the guards along it, and imposes
constraints on the variables before the step (e.g., sv), after
the step (sv0), and temporary variables (sv0). If one fixes the
variables before the step, different valuations (of the primed
variables) that satisfy the constraints capture non-determinism.

A system consists of n � f processes that concurrently
execute the code corresponding to the CFA, and communicate
via nsnt. Thus, there are two sources of unboundedness: first,
the integer variables, and second, the parametric number of
processes. We deal with these two issues in two steps.
Step 1: PIA data abstraction. We observe that the CFA
contains several transitions which are labeled with threshold
guards that refer to (unbounded) variables and parameters. For
instance, the CFA in Figure 1 contains the following transition,
which is labeled with a threshold guard:

q4 q5t + 1 rcvd0

The CFA also contains a guard n � t rcvd0. Actually, the
correctness of the FTDA is based on the fact that the values

of the thresholds, e.g., t+1 and n� t, are sufficiently far apart
from each other under the resilience condition n > 3t^f t;
in particular, (n � t) � f � t + 1. These properties are
also used in the manual proofs [33]. We observe that such
FTDAs are designed by carefully choosing the thresholds and
the resilience condition. Consequently, our abstraction must
be sufficiently precise to preserve the relationship between
thresholds and the resilience condition.

The second important observation is that it is not necessary
to keep track of the precise value of variables that are compared
against thresholds, e.g., rcvd0. Rather, in our case study, it is
sufficient to know whether rcvd0 lies in the interval [0, t + 1[,
or [t + 1, n� t[, or [n� t,1[, in order to determine which of
the threshold guards of the CFA are satisfied. Our parametric
interval abstraction PIA exploits this idea. In addition, in
Step 2 we will see that we also have to distinguish 0 from
other values. Thus, PIA consists of mapping integers to a finite
domain of four intervals I0 = [0, 1[and I1 = [1, t + 1[and
I2 = [t + 1, n� t[and I3 = [n� t;1[.

Then, we replace the guards that refer to unbounded vari-
ables and parameters by their existential abstraction. For
instance, the above transition with the guard “t + 1 rcvd0”
means that rcvd0 lies in the intervals [t+1, n�t[or [n�t,1[.
As these correspond to the abstract intervals I2 and I3,
respectively, we can replace the guard by:

q4 q5rcvd0 = I2 _ rcvd0 = I3

The abstraction of the guard “nsnt0 = nsnt + 1” can be
expressed similarly, as later discussed in Figure 4. The ex-
pression “rcvd0 nsnt + f”, which is also used in a guard, is
more complicated as it involves two variables and a parameter.
Still, the basic abstraction idea is the same. The corresponding
abstract expression has the form (rcvd0 = I0 ^ nsnt =
I0)_ (rcvd0 = I0^nsnt = I1)_ · · ·_ (rcvd0 = I3^nsnt = I3).

These abstract guards are Boolean expressions over equal-
ities between variables and abstract values. Therefore, it is
sufficient to interpret the variables nsnt and rcvd over the finite
domain. Hence, all variables range over finite domains, and we
arrive at finite state processes in this way. Our system, however,
is still parameterized, namely, in the number of processes.
Step 2: PIA counter abstraction. We reduce this system to
a finite state system using the following two ideas. First, we
change to a counter-based representation, i.e., the global state
is represented by the (abstract) shared variable nsnt, and by
one counter for each of the local states. A counter stores how
many processes are in the corresponding local state. Second, as
processes interact only via the nsnt variable, precisely counting
processes in certain states may not be necessary; as nsnt
already ranges over the abstract domain, it is natural to count
processes in terms of the same abstract domain.

The local state of a process is determined by the values of sv
and rcvd. Thus, we denote by [x, y] = I that the number
of processes with sv = x and rcvd = y lies in the abstract
interval I . Then, in Figure 3, the state s0 represents the initial
states with t + 1 to n� t� 1 processes having sv = V0 and 1
to t processes having sv = V1. (We omit local states that have
the counter value I0 to facilitate reading.)

185202

85

[V0, I0] = I2
[V1, I0] = I1

nsnt = I0

s0

[V0, I0] = I2
[V0, I1] = I1
[V1, I0] = I1
nsnt = I0

s1

[V0, I0] = I1
[V0, I1] = I1
[V1, I0] = I1
nsnt = I0

s2

[V0, I1] = I1
[V1, I0] = I1
nsnt = I0

s6

[V0, I0] = I2
[V0, I1] = I2
[V1, I0] = I1
nsnt = I0

s3

[V0, I0] = I1
[V0, I1] = I2
[V1, I0] = I1
nsnt = I0

s4

.

.

Fig. 3. A small part of the transition system obtained by counter abstraction.
As shown by our experimental data in Table I of Section VII, the reachable
state space is substantially larger.

Figure 3 gives a small part of the transition system obtained
from the counter abstraction starting from initial state s0.
Each transition corresponds to one process taking a step in
the concrete system. For instance, in the transition (s0, s2)
a process with local state [V0, I0] changes its state to [V0, I1].
Therefore, the counter [V0, I0] is decremented and the counter
[V0, I1] is incremented. However, as we interpret counters
over the abstract domain, the operations of incrementing and
decrementing a counter are actually non-deterministic. Conse-
quently, the transition (s0, s1) captures the same concrete local
step as (s0, s2). In (s0, s1), the non-deterministic decrement
of the abstract counter [V0, I0] did not change its value.

Typically, the specifications of FTDAs refer to global states
where “there is a process in a given local state” or “all
processes are in a given local state.” To express this via
counters, we have to check whether counter values are I0.
Abstraction refinement. Our abstraction steps result in a
system which is an over-approximation of all systems with
fixed parameters. For instance, the non-determinism in the
counters may “increase” or “decrease” the number of processes
in a system, although in all concrete system the number
of processes is constant: Consider the transition (s2, s6) in
Figure 3, and let x, y, z be the non-negative integers that
are in s2 abstracted to [V0, I0], [V0, I1], and [V1, I0],
respectively. Similarly y0 and z0 are abstracted to [V0, I1]
and [V1, I0] in s6. If the following inequalities do not have
a solution under the resilience condition (n > 3t, t � f), then
there is no concrete system with a transition between two states
that are abstracted to s2 and s6, respectively.

1 x < t + 1, 1 y < t + 1, 1 z < t + 1,

1 y0 < t + 1, 1 z0 < t + 1,

x + y + z = y0 + z0 = n� f.

We use an SMT solver for this, and examine each transition
of a counterexample returned by a model checker. If a transi-
tion is spurious, then we remove it from the abstract system.
Related abstractions. Interval abstraction [10] is a natural
solution to the problem of unboundedness of local variables.
However, if we fixed the interval bounds to numeric values,
then they would not be aligned to the thresholds, and the

abstraction would not be sufficiently precise to do parametric
verification. At the same time, we do not have to deal with
symbolic ranges over variables in the sense of [30], because
for FTDAs the interval bounds are constant in each run.

Further, we want to produce a single process skeleton that
is independent of parameters and captures the behavior of
all process instances. This can be done by using ideas from
existential abstraction [9], [12], [25] and sound abstraction of
fairness constraints [25]. We combine these two ideas to arrive
at PIA data abstraction.

The PIA counter abstraction is similar to [29], in that
counters range over an abstract domain, and increment and
decrement is done using existential abstraction. The domain
in [29] consists of three values representing 0, 1, or more.
This domain is sufficient for mutual-exclusion-like problems:
It allows to distinguish good from bad states, while it is not
possible (and also not necessary) to distinguish two bad states:
A bad state is one where at least two processes are in the
critical section, which is precisely abstracted in the three-
valued domain. However, two bad states where, e.g., 2 and 3
processes are in the critical section, respectively, cannot be
distinguished. Verification of threshold-based FTDAs requires
more involved counting; e.g., we have to capture whether at
least n� t processes or at most t processes incremented nsnt.
Therefore, we use counters from the PIA domain.

III. SYSTEM MODEL WITH MULTIPLE PARAMETERS

In this section we develop all notions that are required to
precisely state the parameterized model checking problem for
multiple parameters. As running example, we use the parame-
ters mentioned above, namely, the number of processes n, the
upper bound on the number of faults t, and the actual number
of faults f . We start to define parameterized processes (that
access shared variables) in a way that allows us to modularly
compose them into a parameterized system instance.

We apply this modeling to verify FTDAs as follows: as
input we take a process description that uses the parameters n
and t in the code. From this we construct a system instance
parameterized with n, t, and f , which then describes all runs of
an algorithm in which exactly f faults occur. The verification
problem for a distributed algorithm in the concrete case with
fixed n and t is the composition of model checking problems
that differ in the actual value of f t. This modeling also
allows us to set f = t + 1, which models runs in which more
faults occur than expected, and search for counterexamples.
For the parameterized case, we introduce a resilience condition
on these parameters, and require to verify the algorithm for all
values of parameters that satisfy the resilience condition.

We define the parameters, local variables of the processes,
and shared variables referring to a single domain D that
is totally ordered and has the operations of addition and
subtraction. In this paper we assume that D is the set of
nonnegative integers N0.

We start with some notation. Let Y be a finite set of
variables ranging over D. We denote by D|Y |, the set of all
|Y |-tuples of variable values. Given s 2 D|Y |, we use the
expression s.y, to refer to the value of a variable y 2 Y in

186 203

86

vector s. For two vectors s and s0, by s =X s0 we denote the
fact that for all x 2 X , s.x = s0.x holds.
Process. The set of variables V is {sv} [⇤ [� [⇧: The
variable sv is the status variable that ranges over a finite
set SV of status values. The finite set ⇤ contains variables that
range over the domain D. The variable sv and the variables
from ⇤ are local variables. The finite set � contains the
shared variables that range over D. The finite set ⇧ is a set
of parameter variables that range over D, and the resilience
condition RC is a predicate over D|⇧|. In our example,
⇧ = {n, t, f}, and the resilience condition RC(n, t, f) is
n > 3t ^ f t ^ t > 0. Then, we denote the set of
admissible parameters by PRC = {p 2 D|⇧| | RC(p)}.

A process operates on states from the set S = SV ⇥D|⇤|⇥
D|�| ⇥D|⇧|. Each process starts its computation in an initial
state from a set S0 ✓ S. A relation R ✓ S ⇥ S defines
transitions from one state to another, with the restriction
that the values of parameters remain unchanged, i.e., for all
(s, t) 2 R, s =⇧ t. Then, a parameterized process skeleton is
a tuple Sk = (S, S0, R).

We get a process instance by fixing the parameter values
p 2 D|⇧|: one can restrict the set of process states to S|p =
{s 2 S | s =⇧ p} as well as the set of transitions to R|p =
R\(S|p⇥S|p). Then, a process instance is a process skeleton
Sk|p = (S|p, S0|p, R|p) where p is constant.
System Instance. For fixed admissible parameters p, a dis-
tributed system is modeled as an asynchronous parallel com-
position of identical processes Sk|p. The number of processes
depends on the parameters. To formalize this, we define the
size of a system (the number of processes) using a function
N : PRC ! N0, for instance, when modeling only correct
processes explicitly, we use n� f for N(n, t, f).

Given p 2 PRC , and a process skeleton Sk = (S, S0, R),
a system instance is defined as an asynchronous parallel
composition of N(p) process instances, indexed by i 2
{1, . . . , N(p)}, with standard interleaving semantics. Let AP
be a set of atomic propositions. A system instance Inst(p, Sk)
is a Kripke structure (SI , S

0
I , RI , AP,�I) where:

• SI = {(�[1], . . . ,�[N(p)]) 2 (S|p)N(p) | 8i, j 2
{1, . . . , N(p)},�[i] =�[⇧ �[j]} is the set of (global)
states. Informally, a global state � is a Cartesian product
of the state �[i] of each process i, with identical values
of parameters and shared variables at each process.

• S0
I = (S0)N(p) \ SI is the set of initial (global) states,

where (S0)N(p) is the Cartesian product of initial states
of individual processes.

• A transition (�,�0) from a global state � 2 SI to a
global state �0 2 SI belongs to RI iff there is an index
i, 1 i N(p), such that:

(MOVE) The i-th process moves: (�[i],�0[i]) 2 R|p.
(FRAME)The values of the local variables of the other

processes are preserved: for every process in-
dex j 6= i, 1 j N(p), it holds that
�[j] ={sv}[⇤ �

0[j].
• �I : SI ! 2AP is a state labeling function.
Remark 1: The set of global states SI and the transition

relation RI are preserved under every transposition i $ j of

process indices i and j in {1, . . . , N(p)}. That is, every system
Inst(p, Sk) is fully symmetric by construction.
Atomic Propositions. We define the set of atomic propo-
sitions AP to be the disjoint union of APSV and APD:
The set APSV contains propositions that capture comparison
against a given status value Z 2 SV , i.e., [8i. svi = Z] and
[9i. svi = Z]. Further, the set of atomic propositions APD
captures comparison of variables x, y, and a linear combina-
tion c of parameters from ⇧; APD consists of propositions of
the form [9i. xi + c < yi] and [8i. xi + c � yi].

The labeling function �I of a system instance Inst(p, Sk)
maps a state � to expressions p from AP as follows (the
existential case is defined accordingly using disjunctions):

[8i. svi = Z] 2 �I(�) iff
N(p)^

i=1

(�[i].sv = Z)

[8i. xi + c � yi] 2 �I(�) iff
N(p)^

i=1

(�[i].x + c(p) � �[i].y)

Temporal Logic. We specify properties using temporal logic
LTL -X over APSV . We use the standard definitions of paths and
LTL -X semantics [6]. A formula of LTL -X is defined inductively
as: (i) a literal p or ¬p, where p 2 APSV , or (ii) F', G',
'U , '_ , and '^ , where ' and are LTL -X formulas.
Fairness. We are interested in verifying safety and liveness
properties. The latter can be usually proven only in the
presence of fairness constraints. As in [25], [29], we consider
verification of safety and liveness in systems with justice
fairness constraints. We define fair paths of a system instance
Inst(p, Sk) using a set of justice constraints J ✓ APD. A
path ⇡ of a system Inst(p, Sk) is J-fair iff for every p 2 J
there are infinitely many states � in ⇡ with p 2 �I(�). By
Inst(p, Sk) |=J ' we denote that the formula ' holds on all
J-fair paths of Inst(p, Sk).

Definition 2: Given a system description containing
• a domain D,
• a parameterized process skeleton Sk = (S, S0, R),
• a resilience condition RC (generating a set of admissible

parameters PRC),
• a system size function N ,
• justice requirements J ,

and an LTL -X formula ', the parameterized model checking
problem (PMCP) is to verify 8p 2 PRC . Inst(p, Sk) |=J '.

IV. THRESHOLD-GUARDED FTDAS

In [24], we formalized threshold-guarded FTDAs in
Promela. In order to introduce our abstraction technique, we
propose a language-independent approach that focuses on the
control flow and is based on control flow automata (CFA) [21].

A guarded control flow automaton (CFA) is an edge-labeled
directed acyclic graph A = (Q, qI , qF , E) with a finite set Q
of nodes called locations, an initial location qI 2 Q, and a final
location qF 2 Q. A path from qI to qF is used to describe
one step of a distributed algorithm. The edges have the form

187204

87

E ✓ Q⇥guard⇥Q, where guard is defined as an expression
of one of the following forms where a0, . . . , a|⇧| 2 Z, and
⇧ = {p1, . . . , p|⇧|}:

• if Z 2 SV , then sv = Z and sv 6= Z are status guards;
• if x is a variable in D and C 2 {, >}, then

a0 +
X

1i|⇧|
ai · pi C x

is a threshold guard;
• if y, z1, . . . , zk are variables in D for k � 1, and C 2

{=, 6=, <, , >,�}, and a0, . . . , a|⇧| 2 Z, then

y C z1 + · · · + zk +
�
a0 +

X

1i|⇧|
ai · pi

�

is a comparison guard;
• a conjunction g1 ^ g2 of guards g1 and g2 is a guard.
Status guards are used to capture the basic control flow.

Threshold guards capture the core primitive of the FTDAs we
consider. Finally, comparison guards are used to model send
and receive operations. Figure 1 shows an example CFA with
� = {nsnt}, ⇤ = {rcvd}, and ⇧ = {n, t, f}.
Obtaining a Skeleton from a CFA. One step of a process
skeleton is defined by a path from qI to qF in a CFA. Given SV ,
⇤, �, ⇧, RC, and a CFA A, we define the process skeleton
Sk(A) = (S, S0, R) induced by A as follows: The set of
variables used by the CFA is W ◆ ⇧ [⇤ [� [{sv} [{x0 |
x 2 ⇤[�[{sv}}, which may contain also temporary variables.
A variable x corresponds to the value before a step, x0 to the
value after the step, and x0, x1, . . . to intermediate values. A
path p from qI to qF induces a conjuction of all the guards
along it. We call a mapping v from W to the values from the
respective domains a valuation. We write v |= p to denote that
the valuation v satisfies the guards of the path p. We define
the mapping between a CFA A and the transition relation of
a process skeleton Sk(A): If there is a path p and a valuation
v with v |= p, then v defines a single transition (s, t) of a
process skeleton Sk(A), if for each variable x 2 ⇤[�[{sv} it
holds that s.x = v(x) and t.x = v(x0) and for each parameter
variable z 2 ⇧, s.z = t.z = v(z). Finally, the initial states S0

need to be specified. For the type of algorithms we consider
in this paper, all variables of the skeleton that range over D
are initialized to 0, and sv ranging over SV takes an initial
value from a fixed subset of SV . (For other algorithms, or self-
stabilizing systems, one would choose different initializations.)

Remark 3: It might seem restrictive that our guards do not
contain, e.g., increment, assignments, non-deterministic choice
from a range of values. However, all these statements can be
translated in our form using the SSA transformation algorithm
from [11]. For instance, Figure 1 has been obtained from the
Promela case study in [24], which contains the mentioned
statements. Figures 1 and 2 provide two of the algorithms we
have used for our experiments in Section VII.

Definition 4 (PMCP for CFA): We define the Parameter-
ized Model Checking Problem for CFA A by specializing
Definition 2 to the parameterized process skeleton Sk(A).

The problem given in Definition 4 is undecidable even if
the CFA contains only status variables [23].

V. ABSTRACTION SCHEME

The input to our abstraction method is the infinite parame-
terized family F = {Inst(p, Sk(A)) | p 2 PRC} of Kripke
structures specified via a CFA A. The family F has two
principal sources of unboundedness: unbounded variables in
the process skeleton Sk(A), and the unbounded number of
processes N(p). We deal with these two aspects separately,
using two abstraction steps, namely the PIA data abstraction
and the PIA counter abstraction. In both abstraction steps we
use the parametric interval abstraction PIA.

Given a CFA A, let GA be the set of all linear combi-
nations a0 +

P
1i|⇧| ai · pi in the left-hand sides of A’s

threshold guards. Every expression " of GA defines a function
f" : PRC ! D. Let T = {0, 1} [{f" | " 2 GA} be a finite
threshold set, and µ + 1 its cardinality. For convenience, we
name elements of T as ✓0, ✓1, . . . , ✓µ with ✓0 corresponding to
the constant function 0, and ✓1 corresponding to the constant 1.
E.g., the CFA in Fig. 1 has the threshold set {✓0, ✓1, ✓2, ✓3},
where ✓2(n, t, f) = t + 1 and ✓3(n, t, f) = n � t. Then, we
define the domain of parametric intervals as:

bD = {Ij | 0 j µ}

Our abstraction rests on an implicit property of many
FTDAs, namely, that the resilience condition RC induces an or-
der on the thresholds used in the algorithm (e.g., t+1 < n�t).

Definition 5: The finite set T is uniformly ordered if for all
p 2 PRC , and all ✓j(p) and ✓k(p) in T with 0 j < k µ,
it holds that ✓j(p) < ✓k(p).

Assuming such an order does not limit the application of our
approach: In cases where only a partial order is induced by RC,
one can simply enumerate all finitely many total orders. As
parameters, and thus thresholds, are kept unchanged in a run,
one can verify an algorithm for each threshold order separately,
and then combine the results.

Definition 5 allows us to properly define the parameterized
abstraction function ↵p : D ! bD and the parameterized
concretization function �p : bD ! 2D.

↵p(x) =

⇢
Ij if x 2 [✓j(p), ✓j+1(p)[for some 0 j < µ

Iµ otherwise.

�p(Ij) =

⇢
[✓j(p), ✓j+1(p)[if j < µ

[✓µ(p),1[otherwise.

From ✓0(p) = 0 and ✓1(p) = 1, it immediately follows
that for all p 2 PRC , we have ↵p(0) = I0, ↵p(1) = I1, and
�p(I0) = {0}. Moreover, from the definitions of ↵, �, and
Definition 5 one immediately obtains:

Proposition 6: For all p in PRC , and for all a in D, it holds
that a 2 �p(↵p(a)).

Definition 7: We define comparison between parametric in-
tervals Ik and I` as Ik I` iff k `.

The PIA domain has similarities to predicate abstraction
since the interval borders are naturally expressed as predicates,
and computations over PIA are directly reduced to SMT
solvers. However, notions such as the order of Definition 7
are not naturally expressed in terms of predicate abstraction.

188 205

88

x̂2

x1

x̂1

1 t + 1 n � t

I0 I1 I2 I3

I0

I1

I2

I3

� ⌘ x2 = x1 + 1 �̂ ⌘ x̂1 = I0 ^ x̂2 = I1

_ x̂1 = I1 ^ x̂2 = I1

_ x̂1 = I1 ^ x̂2 = I2

_ x̂1 = I2 ^ x̂2 = I2

_ x̂1 = I2 ^ x̂2 = I3

_ x̂1 = I3 ^ x̂2 = I3

Fig. 4. The shaded area approximates the line x2 = x1 + 1 along the
boundaries of our parametric intervals. Each shaded rectangle corresponds to
one conjunctive clause in the formula to the right. Thus, given � ⌘ x2 = x1+
1, the shaded rectangles correspond to ||�||9, from which we immediately
construct the existential abstraction �̂.

A. PIA data abstraction

We now discuss an existential abstraction of a formula � that
is either a threshold or a comparison guard (we consider other
guards later). To this end, we introduce notation for sets of vec-
tors satisfying �. According to Section IV, formula � has two
kinds of free variables: parameter variables from ⇧ and data
variables from ⇤[�. Let xp be a vector of parameter variables
(xp

1, . . . , x
p
|⇧|) and xv be a vector of variables (xv

1, . . . , x
v
k)

over Dk. Given a k-dimensional vector d of values from D, by

xp = p,xv = d |= �

we denote that � is satisfied on concrete values xv
1 =

d1, . . . , x
v
k = dk and parameter values p. Then, we define:

||�||9 = {d̂ 2 bDk | 9p 2 PRC 9d = (d1, . . . , dk) 2 Dk.

d̂ = (↵p(d1), . . . ,↵p(dk)) ^ xp = p,xv = d |= �}

Hence, the set ||�||9 contains all vectors of abstract values
that correspond to some concrete values satisfying �. Parame-
ters do not appear anymore due to existential quantification. A
PIA existential abstraction of � is defined to be a formula �̂
over a vector of variables x̂ = (x̂1, . . . , x̂k) over bDk such that
{d̂ 2 bDk | x̂ = d̂ |= �̂} ◆ ||�||9.
Computing PIA abstractions. The central property of our
abstract domain is that it allows to abstract comparisons against
thresholds (i.e., threshold guards) in a precise way. That is, we
can abstract formulas of the form ✓j(p) x1 by Ij x̂1 and
✓j(p) > x1 by Ij > x̂1. In fact, this abstraction is precise in
the following sense.

Proposition 8: For all p 2 PRC and all a 2 D:
✓j(p) a iff Ij ↵p(a), and ✓j(p) > a iff Ij > ↵p(a).

For comparison guards we use the general form, well-known
from the literature, from the following proposition.

Proposition 9: If � is a formula over variables x1, . . . , xk

over D, then
W

(d̂1,...,d̂k)2||�||9 x̂1 = d̂1 ^ · · · ^ x̂k = d̂k is a
PIA existential abstraction.

If the domain bD is small (as it is in our case), then one
can enumerate all vectors of abstract values in bDk and check
which belong to our abstraction ||�||9, using an SMT solver.
As example consider the PIA domain {I0, I1, I2, I3} for the

CFA from Fig. 1. Fig. 4 illustrates ||�||9 of x2 = x1 + 1 and
the use of the formula from Proposition 9.
Transforming CFA. We now describe a general method to
abstract guard formulas, and thus construct an abstract process
skeleton. To this end, we denote by ↵E a mapping from a
concrete formula � to some existential abstraction of � (not
necessarily constructed as above). By fixing ↵E , we can define
an abstraction of a guard of a CFA:

abs(g) =

8
>><
>>:

↵E(g) if g is a threshold guard
↵E(g) if g is a comparison guard
g if g is a status guard
abs(g1) ^ abs(g2) otherwise, i.e., g is g1 ^ g2

By abusing the notation, for a CFA A by abs(A) we denote
the CFA that is obtained from A by replacing every guard g
with abs(g). Note that abs(A) contains only guards over sv
and over abstract variables over bD. For model checking, we
have to reason about the Kripke structures that are built using
the skeletons obtained from CFAs. We denote by Skabs(A),
the process skeleton that is induced by CFA abs(A), and by
Inst(p, Skabs(A)) an instance constructed from Skabs(A).
Soundness. It can be shown that for all p 2 PRC , and for
all CFA A, Inst(p, Sk(A)) is simulated by Inst(p, Skabs(A)),
with respect to APSV . Moreover, the abstraction of a J-fair
path of Inst(p, Sk(A)) is a J-fair path of Inst(p, Skabs(A)).

B. PIA counter abstraction
In this section, we present a counter abstraction inspired

by [29], which maps a system instance composed of identical
finite state process skeletons to a single finite state system.
We use the PIA domain bD along with abstractions ↵E({x0 =
x + 1}) and ↵E({x0 = x� 1}) for the counters.

Let us consider a process skeleton Sk = (S, S0, R), where
S = SV ⇥ D̃|⇤| ⇥ D̃|�| ⇥ D̃|⇧| that is defined using an
arbitrary finite domain D̃. We present counter abstraction over
the abstract domain bD in two stages, where the first stage is
only a change in representation, but not an abstraction.
Stage 1: Vector Addition System with States (VASS). Let
L = {` 2 SV ⇥ D̃|⇤| | 9s 2 S. ` ={sv}[⇤ s} be the set
of local states of a process skeleton. As the domain D̃ and
the set of local variables ⇤ are finite, L is finite. We write
the elements of L as `1, . . . , `|L|. We define the counting
function K : SI ⇥ L ! D such that K[�, `] is the number
of processes i whose local state is ` in global state � 2 SI ,
i.e., �[i] ={sv}[⇤ `. Thus, we represent the system state � as a
tuple (g1, . . . , gk, K[�, `1], . . . , K[�, `|L|]), i.e., by the shared
global state and by the counters for the local states. If a process
moves from local state `i to local state `j , the counters of `i
and `j will decrement and increment, respectively.
Stage 2: Abstraction of VASS. We abstract the counters K
of the VASS representation using the PIA domain to obtain
a finite state Kripke structure C(Sk). To compute C(Sk) =
(SC, S0

C, RC, AP,�C) we proceed as follows:
A state w 2 SC is given by values of shared vari-

ables from the set �, ranging over D̃|�|, and by a vector

189206

89

([`1], . . . ,[`|L|]) over the abstract domain bD from Sec-
tion V. More concisely, SC = bD|L| ⇥ D̃|�|.

Definition 10: The parameterized abstraction mapping h̄cnt
p

maps a global state � of the system Inst(p, Sk) to a state w
of the abstraction C(Sk) such that: For all ` 2 L it holds that
w.[`] = ↵p(K[�, `]), and w =� �.

From the definition, one can see how to construct the initial
states. Informally, we require (1) that the initial shared states
of C(Sk) correspond to initial shared states of Sk, (2) that
there are actually N(p) processes in the system, and (3) that
initially all processes are in an initial state.

The intuition for the construction of the transition relation
is as follows: Like in VASS, a step that brings a process
from local state `i to `j can be modeled by decrementing the
(non-zero) counter of `i and incrementing the counter of `j
using the existential abstraction ↵E({0[`i] = [`i]� 1}) and
↵E({0[`j] = [`j] + 1}).
Soundness. We show that for all p 2 PRC , and for all
finite state process skeletons Sk, Inst(p, Sk) is simulated by
C(Sk), w.r.t. APSV . Further, the abstraction of a J-fair path of
Inst(p, Sk) is a J-fair path of C(Sk).

Theorem 11 (Soundness of data & counter abstraction):
For all CFA A, and for all formulas ' from LTL -X over APSV
and justice constraints J ✓ APD: if C(Skabs(A)) |=J ', then
for all p 2 PRC it holds Inst(p, Sk(A)) |=J '.

VI. ABSTRACTION REFINEMENT

The states of the abstract system are determined by variables
over bD. Proposition 8 shows that we precisely abstract the
relevant properties of our variables, i.e., comparisons to thresh-
olds. Hence, the classic CEGAR approach [7], which consists
of refining the state space, does not appear suitable. However,
the non-determinism due to our existential abstraction leads to
spurious transitions that one can eliminate.

We encountered two sources of spurious transitions: As
discussed in Section II, transitions can “lose processes,” i.e.,
any concretization of the abstract number of processes is less
than the number of processes we started with. This is not
within the assumption of FTDAs, and thus spurious. Second,
in our case study (cf. Figure 1) processes increase the global
variable nsnt by one, when they transfer to a state where the
value of the status variable is in {SE, AC}. Hence, in concrete
system instances, nsnt should always be equal to the number
of processes whose status variable value is in {SE, AC}, while
due to phenomena similar to those discussed above, we can
“lose messages” in the abstract system.

The experiments show that in our case studies neither
losing processes nor losing messages has influence on the
verification of safety specifications. However, these behaviors
pose challenges for liveness as they lead to spurious coun-
terexamples: Message passing FTDAs typically require that a
process receives messages from (nearly) all correct processes,
which is problematic if processes (i.e., potential senders) or
messages are lost.

Besides, in Figure 1 we model message receptions by an
update of the variable rcvd, more precisely, rcvd rcvd0 ^
rcvd0 nsnt + f . One may observe that this alone does not

require that the value of rcvd actually increases. Hence, we
add justice requirements, e.g., J = {[8i. rcvdi � nsnt]} in our
case study. As observed by [29], counter abstraction may lead
to justice suppression. Given a counter-example in the form
of a lasso, we detect whether its loop contains only unjust
states. If this is the case, similar to an idea from [29], we
refine C(Skabs(A)) by adding a justice requirement, which is
consistent with existing requirements in all concrete instances.

Below, we give a general framework for a sound refinement
of C(Skabs(A)). (In [23], we provide a more detailed discus-
sion on the practical refinement techniques that we use in our
experiments.) To simplify presentation, we define a monster
system as a (possibly infinite) Kripke structure Sys! =
(S!, S0

!, R!, AP,�!), whose state space and transition relation
are disjoint unions of state spaces and transition relations of
system instances Inst(p, Sk(A)) = (Sp, S0

p, Rp, AP,�p) over
all admissible parameters:

S! =
[

p2PRC

Sp, S0
! =

[

p2PRC

S0
p, R! =

[

p2PRC

Rp

�! : S! ! 2AP and 8p 2 PRC , 8s 2 Sp. �!(s) = �p(s)

Let h : S! ! SC be an abstraction mapping, e.g., a
combination of the abstraction mappings from Section V.

Definition 12: A sequence T = {�i}i�1 is a concretization
of path T̂ = {wi}i�1 from C(Skabs(A)) if and only if �1 2 S0

!
and for all i � 1 it holds h(�i) = wi.

Definition 13: A path T̂ of C(Skabs(A)) is a spurious path
iff every concretization T of T̂ is not a path in Sys! .

A prerequisite to abstraction refinement is to check whether
a counter-example provided by the model checker is spurious.
While for finite state systems there are methods to detect
whether a path is spurious [7], we are not aware of a method
to detect whether a path T̂ in C(Skabs(A)) corresponds to a
path in the (concrete) infinite monster system Sys! . Therefore,
we limit ourselves to detecting and refining uniformly spuri-
ous transitions and unjust states. We first consider spurious
transitions.

Definition 14: An abstract transition (w, w0) 2 RC is uni-
formly spurious iff there is no transition (�,�0) 2 R! with
w = h(�) and w0 = h(�0).

The following theorem provides us with a general criterion
that ensures that removing uniformly spurious transitions does
not affect the property of transition preservation.

Theorem 15: Let T ✓ RC be a set of spurious transitions.
Then for every transition (�,�0) 2 R! there is a transition
(h(�), h(�0)) in RC \ T .

It follows that the system (SC, S0
C, RC \ T, AP,�C) still

simulates Sys! . After considering spurious transitions, we
now consider justice suppression.

Definition 16: An abstract state w 2 SC is unjust under
q 2 APD iff there is no concrete state � 2 S! with w = h(�)
and q 2 �!(�).

Consider infinite counterexamples of C(Skabs(A)), which
have a form of lassos w1 . . . wk(wk+1 . . . wm)! . For such a
counterexample T̂ we denote the set of states in the lasso’s
loop by U . We then check, whether all states of U are unjust

190 207

90

under some justice constraint q 2 J . If this is the case, then T̂
is a spurious counterexample, because the justice constraint q
is violated. Note that it is sound to only consider infinite paths,
where states outside of U appear infinitely often; in fact, this
is a justice requirement. To refine C’s unjust behavior we add
a corresponding justice requirement. Formally, we augment J
(and APD) with a propositional symbol [o↵ U]. Further, we
augment the labelling function �C such that every w 2 SC is
labelled with [o↵ U] if and only if w 62 U .

Theorem 17: Let J ✓ APD be a set of justice requirements,
q 2 J , and U ✓ SC be a set of unjust states under q. Let ⇡ =
{�i}i�1 be an arbitrary fair path of Sys! under J . The path
⇡̂ = {h(�i)}i�1 is fair in C(Skabs(A)) under J [{[o↵ U]}.

From this we derive that loops containing only unjust states
can be eliminated, and thus C(Skabs(A)) be refined.

We encountered cases where several non-uniform spurious
transitions resulted in a uniformly spurious path (i.e., a coun-
terexample). We refine such spurious behavior by invariants.
These invariants are provided by the user as invariant can-
didates, and are then automatically checked to actually be
invariants using an SMT solver. In our example the invariant
is simply “the number of processes that sent a message equals
the number of sent messages.”

VII. EXPERIMENTAL EVALUATION

To show feasibility of our abstractions, we have imple-
mented the PIA abstractions and the refinement loop in OCaml
as a prototype tool BYMC. We evaluated it on different
broadcasting algorithms. They deal with different fault models
and resilience conditions; the algorithms are: (BYZ), which is
the algorithm from Figure 1, for t Byzantine faults if n > 3t,
(SYMM) for t symmetric (identical Byzantine [2]) faults if
n > 2t, (OMIT) for t send omission faults if n > 2t, and
(CLEAN) for t clean crash faults [37] if n > t. In addition,
we verified the RBC algorithm — formalized also in [18] —
whose CFA is given in Figure 2. In this paper we verify the
following safety and liveness specifications:

[8i. svi 6= V1]!G [8j. svj 6= AC] (U)
[8i. svi = V1]!F [9j. svj = AC] (C)

G (¬ [9i. svi = AC])_ F [8j. svj = AC] (R)

In addition, in [18] a specification A for RBC was introduced,
which we verify for RBC. In contrast to [18], we actually im-
plemented our verification method and give experimental data.

From the literature we know that we cannot expect to verify
these FTDAs without restricting the environment, e.g., with
communication fairness, namely, every message sent is even-
tually received. To capture this, we use justice requirements,
e.g., J = {[8i. rcvdi � nsnt]} in the Byzantine case.

We extended PROMELA [22] with constructs to express
⇧, AP, RC, and N [24]. BYMC receives a description of
a CFA A in this extended PROMELA, and then syntactically
extracts the thresholds. The tool chain uses the Yices SMT
solver for existential abstraction, and generates the counter
abstraction C(Skabs(A)) in standard Promela, such that we can
use Spin to do finite state model checking. Finally, BYMC
also implements the refinements introduced in Section VI

TABLE I. SUMMARY OF EXPERIMENTS

M |= '? RC Spin Spin Spin Spin | bD| #R Total
Time Memory States Depth Time

Byz |= U (A) 2.3 s 82 MB 483k 9154 4 0 4 s
Byz |= C (A) 3.5 s 104 MB 970k 20626 4 10 32 s
Byz |= R (A) 6.3 s 107 MB 1327k 20844 4 10 24 s
Sym |= U (A) 0.1 s 67 MB 19k 897 3 0 1 s
Sym |= C (A) 0.1 s 67 MB 19k 1113 3 2 3 s
Sym |= R (A) 0.3 s 69 MB 87k 2047 3 12 16 s
Omt |= U (A) 0.1 s 66 MB 4k 487 3 0 1 s
Omt |= C (A) 0.1 s 66 MB 7k 747 3 5 6 s
Omt |= R (A) 0.1 s 66 MB 8k 704 3 5 10 s
Cln |= U (A) 0.3 s 67 MB 30k 1371 3 0 2 s
Cln |= C (A) 0.4 s 67 MB 35k 1707 3 4 8 s
Cln |= R (A) 1.1 s 67 MB 51k 2162 3 13 31 s

RBC |= U — 0.1 s 66 MB 0.8k 232 2 0 1 s
RBC |= A — 0.1 s 66 MB 1.7k 333 2 0 1 s
RBC |= R — 0.1 s 66 MB 1.2k 259 2 0 1 s
RBC 6|= C — 0.1 s 66 MB 0.8k 232 2 0 1 s
Byz 6|= U (B) 5.2 s 101 MB 1093k 17685 4 9 56 s
Byz 6|= C (B) 3.7 s 102 MB 980k 19772 4 11 52 s
Byz 6|= R (B) 0.4 s 67 MB 59k 6194 4 10 17 s
Byz |= U (C) 3.4 s 87 MB 655k 10385 4 0 5 s
Byz |= C (C) 3.9 s 101 MB 963k 20651 4 9 32 s
Byz 6|= R (C) 2.1 s 91 MB 797k 14172 4 30 78 s
Sym 6|= U (B) 0.1 s 67 MB 19k 947 3 0 2 s
Sym 6|= C (B) 0.1 s 67 MB 18k 1175 3 2 4 s
Sym |= R (B) 0.2 s 67 MB 42k 1681 3 8 12 s
Omt |= U (D) 0.1 s 66 MB 5k 487 3 0 1 s
Omt 6|= C (D) 0.1 s 66 MB 5k 487 3 0 2 s
Omt 6|= R (D) 0.1 s 66 MB 0.1k 401 3 0 2 s

and refines the Promela code for C(Skabs(A)) by introducing
predicates capturing spurious transitions and unjust states.

Table I summarizes our experiments run on 3.3GHz Intel R�
CoreTM 4GB. In the cases (A) we used resilience conditions as
provided by the literature, and verified the specification. The
model RBC is the reliable broadcast algorithm also considered
in [18] under the resilience condition n � t � f . In the
bottom part of Table I we used different resilience conditions
under which we expected the algorithms to fail. The cases (B)
capture the case where more faults occur than expected by
the algorithm designer (f t + 1 instead of f t), while
the cases (C) and (D) capture the cases where the algorithms
were designed by assuming wrong resilience conditions (e.g.,
n � 3t instead of n > 3t in the Byzantine case). We
omit (CLEAN) as the only sensible case n = t = f (all
processes are faulty) results into a trivial abstract domain of
one interval [0,1). The column “#R” gives the numbers of
refinement steps. In the cases where it is greater than zero,
refinement was necessary, and “Spin Time” refers to the SPIN
running time after the last refinement step. Finally, column | bD|
indicates the size of the abstract domain.

VIII. RELATED WORK

Traditionally, correctness of FTDAs is shown by handwritten
proofs [27], [2], and, in some cases, by proof assistants [26],
[31], [5]. Completely automated model checking or synthesis
are usually not parameterized [24], [36], [34], [3]. Our work
stands in the tradition of parameterized model checking for
protocols [4], [20], [17], [29], [8], e.g., mutual exclusion and
cache coherence. In particular, counter abstraction and justice
preservation by Pnueli et al. [29] are keystones of our work.

191208

91

To the best of our knowledge there are two papers on
parameterized model checking of FTDAs [18], [1]. The au-
thors of [18] use regular model checking to make interesting
theoretical progress, but did not do any implementation. Their
models are limited to processes whose local state space and
transition relation are finite and independent of parameters.
This was sufficient to formalize a reliable broadcast algorithm
that tolerates crash faults, and where every process stores
whether it has received at least one message. Such models
are not sufficient to capture FTDAs that contain threshold
guards as in our case. Moreover, the presence of a resilience
condition such as n > 3t would require them to intersect the
regular languages, which describe sets of states, with context-
free languages that enforce the resilience condition.

In [1], the safety of synchronous broadcasting algorithms
that tolerate crash or send omission faults has been verified.
These FTDAs have similar restrictions as the ones considered
in [18]: Alberti et al. [1] mention that they did not consider
FTDAs that feature “substantial arithmetic reasoning”, i.e.,
threshold guards and resilience conditions, as they would
require novel suitable techniques. Our abstractions address this
arithmetic reasoning.

To the best of our knowledge, the current paper is thus the
first in which safety and liveness of an FTDA that tolerates
Byzantine faults has been automatically verified for all system
sizes and all admissible numbers of faulty processes.

IX. CONCLUSIONS

We extended the standard setting of parameterized model
checking to processes that use threshold guards, and are
parameterized with a resilience condition. As a case study
we have chosen the core of several broadcasting algorithms
under different failure models, including one [33] that tolerates
Byzantine faults. These algorithms are widely applied in the
literature: typically, multiple (possibly an unbounded number
of) instances are used in combination. As future work, we
plan to use compositional model checking techniques [28]
for parameterized verification of such algorithms. Another
open issue is to capture additional fault assumptions such as
communication faults [5], [37].

REFERENCES

[1] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi, “Uni-
versal guards, relativization of quantifiers, and failure models in model
checking modulo theories,” JSAT, vol. 8, no. 1/2, pp. 29–61, 2012.

[2] H. Attiya and J. Welch, Distributed Computing, 2nd ed. Wiley, 2004.
[3] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad, “Symbolic synthesis

of masking fault-tolerant distributed programs,” Distributed Computing,
vol. 25, no. 1, pp. 83–108, 2012.

[4] M. C. Browne, E. M. Clarke, and O. Grumberg, “Reasoning about
networks with many identical finite state processes,” Inf. Comput.,
vol. 81, pp. 13–31, 1989.

[5] B. Charron-Bost and S. Merz, “Formal verification of a consensus
algorithm in the heard-of model,” IJSI, vol. 3, no. 2–3, pp. 273–303,
2009.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[8] E. Clarke, M. Talupur, and H. Veith, “Proving Ptolemy right: the
environment abstraction framework for model checking concurrent
systems,” in TACAS’08/ETAPS’08. Springer, 2008, pp. 33–47.

[9] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM TOPLAS, vol. 16, no. 5, pp. 1512–1542, 1994.

[10] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM, 1977, pp. 238–252.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM TOPLAS, vol. 13, no. 4, pp. 451–490, 1991.

[12] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of
reactive systems,” ACM TOPLAS, vol. 19, no. 2, pp. 253–291, 1997.

[13] R. De Prisco, D. Malkhi, and M. K. Reiter, “On k-set consensus
problems in asynchronous systems,” TPDS, vol. 12, no. 1, pp. 7–21,
2001.

[14] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499–516, 1986.

[15] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J.ACM, vol. 35, no. 2, pp. 288–323, 1988.

[16] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in CADE, ser. LNCS, 2000, vol. 1831, pp. 236–254.

[17] ——, “Exact and efficient verification of parameterized cache coherence
protocols,” in CHARME, ser. LNCS, vol. 2860, 2003, pp. 247–262.

[18] D. Fisman, O. Kupferman, and Y. Lustig, “On verifying fault tolerance
of distributed protocols,” in TACAS, ser. LNCS, vol. 4963, 2008, pp.
315–331.

[19] M. Függer and U. Schmid, “Reconciling fault-tolerant distributed com-
puting and systems-on-chip,” Dist. Comp., vol. 24, no. 6, pp. 323–355,
2012.

[20] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” J. ACM, vol. 39, pp. 675–735, 1992.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in POPL. ACM, 2002, pp. 58–70.

[22] G. Holzmann, The SPIN Model Checker. Addison-Wesley, 2003.
[23] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder, “Counter attack

on Byzantine generals: Parameterized model checking of fault-tolerant
distributed algorithms,” arXiv CoRR, vol. abs/1210.3846, 2012.

[24] ——, “Towards modeling and model checking fault-tolerant distributed
algorithms,” in SPIN, ser. LNCS, vol. 7976, 2013, pp. 209–226.

[25] Y. Kesten and A. Pnueli, “Control and data abstraction: the cornerstones
of practical formal verification,” STTT, vol. 2, pp. 328–342, 2000.

[26] P. Lincoln and J. Rushby, “A formally verified algorithm for interactive
consistency under a hybrid fault model,” in FTCS, 1993, pp. 402–411.

[27] N. Lynch, Distributed Algorithms. Morgan Kaufman, 1996.
[28] K. L. McMillan, “Parameterized verification of the flash cache coher-

ence protocol by compositional model checking,” in CHARME, ser.
LNCS, vol. 2144, 2001, pp. 179–195.

[29] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0,1,1)- counter
abstraction,” in CAV, ser. LNCS. Springer, 2002, vol. 2404, pp. 93–111.

[30] S. Sankaranarayanan, F. Ivancic, and A. Gupta, “Program analysis using
symbolic ranges,” in SAS, ser. LNCS, vol. 4634, 2007, pp. 366–383.

[31] U. Schmid, B. Weiss, and J. Rushby, “Formally verified Byzantine
agreement in presence of link faults,” in ICDCS, 2002, pp. 608–616.

[32] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” Journal
of the ACM, vol. 34, no. 3, pp. 626–645, 1987.

[33] T. Srikanth and S. Toueg, “Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms,” Dist. Comp., vol. 2, pp. 80–94, 1987.

[34] W. Steiner, J. M. Rushby, M. Sorea, and H. Pfeifer, “Model checking a
fault-tolerant startup algorithm: From design exploration to exhaustive
fault simulation,” in DSN, 2004, pp. 189–198.

[35] M. Talupur and M. R. Tuttle, “Going with the flow: Parameterized
verification using message flows,” in FMCAD, 2008, pp. 1–8.

[36] T. Tsuchiya and A. Schiper, “Verification of consensus algorithms using
satisfiability solving,” Dist. Comp., vol. 23, no. 5–6, pp. 341–358, 2011.

[37] J. Widder and U. Schmid, “Booting clock synchronization in partially
synchronous systems with hybrid process and link failures,” Dist.
Comp., vol. 20, no. 2, pp. 115–140, 2007.

192 209

92

Part II

Parameterized and Bounded Model

Checking of Threshold-Guarded

Distributed Algorithms with SMT

93

Chapter 4

On the completeness of bounded model check-

ing for threshold-based distributed algorithms:

Reachability

Igor Konnov, Helmut Veith, and Josef Widder. On the completeness
of bounded model checking for threshold-based distributed algorithms:
Reachability. Journal of Information and Computation, vol. 252, pp. 95-
109, 2017.

doi: http://dx.doi.org/10.1016/j.ic.2016.03.006

95

http://dx.doi.org/10.1016/j.ic.2016.03.006

Information and Computation 252 (2017) 95–109

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

On the completeness of bounded model checking for

threshold-based distributed algorithms: Reachability ✩

Igor Konnov, Helmut Veith, Josef Widder ∗

TU Wien (Vienna University of Technology), Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 December 2014
Available online 2 March 2016

Keywords:
Model checking
Fault-tolerant distributed algorithms
Byzantine faults
Computational models

Counter abstraction is a powerful tool for parameterized model checking, if the number
of local states of the concurrent processes is relatively small. In recent work, we
introduced parametric interval counter abstraction that allowed us to verify the safety
and liveness of threshold-based fault-tolerant distributed algorithms (FTDA). Due to state
space explosion, applying this technique to distributed algorithms with hundreds of local
states is challenging for state-of-the-art model checkers. In this paper, we demonstrate that
reachability properties of FTDAs can be verified by bounded model checking. To ensure
completeness, we need an upper bound on the distance between states. We show that the
diameters of accelerated counter systems of FTDAs, and of their counter abstractions, have
a quadratic upper bound in the number of local transitions. Our experiments show that the
resulting bounds are sufficiently small to use bounded model checking for parameterized
verification of reachability properties of several FTDAs, some of which have not been
automatically verified before.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A system that consists of concurrent anonymous (identical) processes can be modeled as a counter system: Instead of
recording which process is in which local state, we record for each local state, how many processes are in this state. We
have one counter per local state �, denoted by κ[�]. Each counter is bounded by the number of processes. A step by a
process that goes from local state � to local state �′ is modeled by decrementing κ[�] and incrementing κ[�′].

We consider a specific class of counter systems, namely those that are defined by threshold automata. The technical
motivation to introduce threshold automata is to capture the relevant properties of fault-tolerant distributed algorithms
(FTDAs). FTDAs are an important class of distributed algorithms that work even if a subset of the processes fails [26]. Typ-
ically, they are parameterized in the number of processes and the number of tolerated faulty processes. These numbers of
processes are parameters of the verification problem. We show that the counter systems defined by threshold automata
have a diameter whose bound is independent of the bound on the counters, but depends only on characteristics of the
threshold automaton. This bound can be used for parameterized model checking of FTDAs, as we confirm by experimental
evaluation.

✩ Supported by the Austrian Science Fund (FWF) through the National Research Network RiSE (S11403 and S11405) and project P27722 (PRAVDA), and
by the Vienna Science and Technology Fund (WWTF) through project ICT15-103 (APALACHE) and grant PROSEED.

* Corresponding author.
E-mail address: widder@forsyte.at (J. Widder).

http://dx.doi.org/10.1016/j.ic.2016.03.006
0890-5401/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

96

96 I. Konnov et al. / Information and Computation 252 (2017) 95–109

Modeling FTDAs as counter systems defined by threshold automata A threshold automaton consists of rules that define the
conditions and effects of changes to the local state of a process of a distributed algorithm. Conditions are threshold guards
that compare the value of a shared variable to a linear combination of parameters, e.g., x ≥ n − t , where x is a shared
variable and n and t are parameters. This captures counting arguments which are used in FTDAs, e.g., a process takes a
certain step only, if it has received a message from a majority of processes. To model this, we use the shared variable x
as the number of processes that have sent a message, n as the number of processes in the system, and t as the assumed
number of faulty processes. The condition x ≥ n − t then captures a majority under the resilience condition that n > 2t .
Resilience conditions are standard assumptions for the correctness of an FTDA.1 The effect of a rule of a threshold au-
tomaton is that a shared variable is increased, which naturally captures that a process has sent a message. As a process
cannot undo the sending of a message, it is natural to consider threshold automata where shared variables are never de-
creased. In addition, we use shared variables to model the number of processes that have sent a specific message. To be
able to do so, we have to restrict how often a process may send a specific message. In particular, to model the counting
mechanism, we have to prevent that a process sends a message from within an infinite loop (or a loop where the number
of iterations is unknown). We are thus led to consider threshold automata where rules that form cycles do not modify
shared variables. While we add this restriction to derive our technical contribution, we do not consider it too limiting
with respect to the application domain: Indeed, in all our case studies a process sends a given message at most once;
this property appears natural if one considers distributed algorithms under the classic assumption of reliable communica-
tion.

Bounding the diameter For reachability it is not relevant whether we “move” processes one by one from local state � to
local state �′ . If several processes perform the same transition one after the other, we can model this as a single update on
the counters: The sequence where b processes one after the other move from � to �′ can be encoded as a single transition
where κ[�] is decreased by b and κ[�′] is increased by b. We call the value of b the acceleration factor. It may vary in a
run depending on how many repetitions of the same transition should be captured. We call such runs of a counter system
accelerated. The lengths of accelerated runs are the ones relevant for the diameter of the counter system.

Our central idea is that given a run that starts in configuration σ and ends in configuration σ ′ , by swapping and
accelerating transitions in that run, we can construct a run of bounded length that also starts in σ and ends in σ ′ . This
bound then gives us the diameter. For deriving this bound, the main technical challenge comes from the interactions of
shared variables and threshold guards. We address it with the following three ideas:

i. Acceleration. As discussed above.
ii. Sorting. Given an arbitrary run of a counter system, we can shorten it by changing the order of transitions such that

there are possibly many consecutive transitions that can be merged according to (i), and the resulting run leads to the
same configuration as the original run. However, as we have arithmetic threshold conditions, not all changes of the
order result in allowed runs.

iii. Segmentation. We partition a run into segments, inside of which we can reorder the transitions; cf. (ii).

In combination, these three ideas enable us to prove the main theorem: The diameter of a counter system is at most quadratic in
the number of rules; more precisely, it is bounded by the product of the number of rules and the number of distinct threshold conditions.
In particular, the diameter is independent of the parameter values.

Using the bound for parameterized model checking Parameterized model checking is concerned with the verification of con-
current or distributed systems, where the number of processes is not a priori fixed, that is, a system is verified for all
sizes [6]. In our case, the counter systems for all values of n and t that satisfy the resilience condition should be veri-
fied. A well-known parameterized model checking technique is to map all these counter systems to a counter abstraction,
where the counter values are not natural numbers, but range over an abstract finite domain [30]. In [14], we developed
a more general form of counter abstraction for expressions used in threshold guards, which leads, e.g., to the abstract
domain of four values that capture the parametric intervals [0, 1) and [1, t + 1) and [t + 1, n − t) and [n − t, ∞). It is
easy to see [14] that a counter abstraction simulates all counter systems for all parameter values that satisfy the re-
silience condition. The bound d on the diameter of counter systems implies a bound d̂ on the diameter of the counter
abstraction. From this and simulation follows that if an abstract state is not reachable in the counter abstraction within
d̂ steps, then no concretization of this state is reachable in any of the concrete counter systems. This allows us to ef-
ficiently combine counter abstraction with bounded model checking [5]. Typically, bounded model checking is restricted
to finding bugs that occur after a bounded number of steps of the systems. However, if one can show that within
this bound every state is reachable from an initial state, bounded model checking is a complete method for verifying
reachability.

1 Indeed much research in distributed algorithms is devoted to show that certain problems are solvable only under some resilience condition, e.g., the
seminal result on Byzantine fault tolerance by Pease et al. [28].

97

I. Konnov et al. / Information and Computation 252 (2017) 95–109 97

Fig. 1. Example of a threshold automaton.

2. Our approach at a glance

Fig. 1 represents a threshold automaton: The circles depict the local states, and the arrows represent rules (r1 to r5) that
define how the automaton makes transitions. Rounded corner labels correspond to conditional rules, so that the rule can
only be executed if the threshold guard evaluates to true. In our example, x and y are shared variables, and n, t , and f
are parameters. We assume that they satisfy the resilience condition n ≥ 2t ∧ f ≤ t . The number of processes (that each
execute the automaton) depends on the parameters, in this example we assume that n processes run concurrently. Finally,
rectangular labels on arrows correspond to rules that increment a shared variable. The transitions of the counter system are
then defined using the rules, e.g., when rule r2 is executed, then variable y is incremented and the counters κ[�3] and κ[�2]
are updated.

Consider a counter system in which the parameter values are n = 3, and t = f = 1. Let σ0 be the configuration where
x = y = 0 and all counters are 0 except κ[�1] = 3. This configuration corresponds to a concurrent system where all
three processes are in �1. For illustration, we assume that in this concurrent system processes have the identifiers 1, 2,
and 3, and we denote by ri(j) that process j executes rule ri . Recall that we have anonymous (symmetric) systems, so
we use the identifiers only for illustration: the transition of the counter system is solely defined by the rule being exe-
cuted.

As we are interested in the diameter, we have to consider the distance between configurations in terms of length of
runs. In this example, we consider the distance of σ0 to a configuration where κ[�5] = 3, that is, all three processes are
in local state �5. First, observe that the rule r5 is locked in σ0 as y = 0 and t = 1. Hence, we require that rule r2 is
executed at least once so that the value of y increases. However, due to the precedence relation on the rules, before that, r1
must be executed, which is also locked in σ0. The sequence of transitions τ1 = r3(1), r4(1), r3(2), r4(2) leads from σ0 to
the configuration where κ[�1] = 1, κ[�4] = 2, and x = 2; we denote it by σ1. In σ1, rule r1 is unlocked, so we may apply
τ2 = r1(3), r2(3), to arrive at σ2, where y = 1, and thus r5 is unlocked. To σ2 we may apply τ3 = r5(1), r5(2), r4(3), r5(3) to
arrive at the required configuration σ3 with κ[�5] = 3.

In order to exploit acceleration as much as possible, we would like to group together occurrences of the same rule.
In τ1, we can actually swap r4(1) and r3(2) as locally the precedence relation of each process is maintained, and both rules
are unconditional. Similarly, in τ3, we can move r4(3) to the beginning of the sequence τ3. Concatenating these altered
sequences, the resulting schedule is τ = r3(1), r3(2), r4(1), r4(2), r1(3), r2(3), r4(3), r5(1), r5(2), r5(3). We can group together
the consecutive occurrences for the same rules ri , and write the schedule using pairs consisting of rules and acceleration
factors, that is, (r3, 2), (r4, 2), (r1, 1), (r2, 1), (r4, 1), (r5, 3).

In schedule τ , the occurrences of all rules are grouped together except for r4. That is, in the accelerated schedule we
have two occurrences for r4, while for the other rules one occurrence is sufficient. Actually, there is no way around this:
We cannot swap r2(3) with r4(3), as we have to maintain the local precedence relation of process 3. More precisely, in the
counter system, r4 would require us to decrease the counter κ[�2] at a point in the schedule where κ[�2] = 0. We first have
to increase the counter value by executing a transition according to rule r2, before we can apply r4. Moreover, we cannot
move the subsequence r1(3), r2(3), r4(3) to the left, as r1(3) is locked in the prefix.

In this paper we characterize such cases. The issue here is that r4 can unlock r1 (we use the notation r4 ≺U r1), while
r1 precedes r4 in the control flow of the processes (r1 ≺+

P r4). We coin the term milestone for transitions like r1(3) that
cannot be moved, and show that the same issue arises if a rule r locks a threshold guard of rule r′ , where r precedes r′ in
the control flow. As processes do not decrease shared variables, we have at most one milestone per threshold guard. The
sequence of transitions between milestones is called a segment. We prove that transitions inside a segment can be swapped,
so that one can group transitions for the same rule in so-called batches. Each of these batches can then be replaced by a
single accelerated transition that leads to the same configuration as the original batch. Hence, any segment can be replaced
by an accelerated one whose length is at most the number of rules of a process. This, and the number of milestones, gives
us the required bound on the diameter. This bound is independent of the parameters, and only depends on the number of
threshold guards and the precedence relation between the rules of the processes.

Our main result is that the diameter is independent of the parameter values. In contrast, reachability of a specific local
state depends on the parameter values: In order for a process to reach �5 in our example, at least n − f processes must
execute r4 before at least t other processes must execute r2. That is, the system must contain at least (n − f) + t processes.
In case of t > f , we obtain (n − f) + t > n, which is a contradiction, and �5 cannot be reached for such parameter values.
The model checking problem we are interested in is whether a given state is unreachable for all parameter values that satisfy the
resilience condition.

98

98 I. Konnov et al. / Information and Computation 252 (2017) 95–109

3. Parameterized counter systems

3.1. Threshold automata

A threshold automaton describes a process in a concurrent system. It is defined by its local states, shared variables,
parameters, and by rules that define the state changes and their conditions and effects on shared variables. Formally, a
threshold automaton is a tuple TA = (L, I, �, �, R, RC) defined below.

States The set L is the finite set of local states, and I ⊆ L is the set of initial local states. (As we later will index counters
by local states, for simplicity we use the convention that L = {1, . . . , |L|}.) The set � is the finite set of shared variables that
range over N0 = {0, 1, 2, . . . }. To simplify the presentation, we view the variables as vectors in N|�|

0 . The finite set � is a set
of parameter variables that range over N0, and the resilience condition RC is a predicate over N|�|

0 . Then, we denote the set of
admissible parameters by PRC = {p ∈ N|�|

0 : RC(p)}.

Rules A rule defines a conditional transition between local states that may update the shared variables. The semantics is
defined via counter systems in Section 3.2. Here we only give informal explanations of the semantics.

Formally, a rule is a tuple (from, to, ϕ≤, ϕ>, u): The local states from and to are from L. Intuitively, they capture from
which local state to which a process moves, or, in terms of counter systems, which counters decrease and increase, respec-
tively. A rule is only executed if the conditions ϕ≤ and ϕ> evaluate to true. Each condition consists of multiple guards. Each
guard is defined using some shared variable x ∈ �, and coefficients a0, . . . , a|�| ∈ Z, so that

a0 +
∑|�|

i=1
ai · pi ≤ x and a0 +

∑|�|
i=1

ai · pi > x

are a lower guard and upper guard, respectively (both, variables and coefficients, may differ for different guards). The condition
ϕ≤ is a conjunction of lower guards, and the condition ϕ> is a conjunction of upper guards. Rules may increase shared
variables. We model this using an update vector u ∈ N|�|

0 , which is added to the vector of shared variables, when the rule is
executed. Then R is the finite set of rules.

Definition 1 (Precedence). For a threshold automaton (L, I, �, �, R, RC), we define the precedence relation ≺P as subset of
R × R as follows:

r1 ≺P r2 iff r1.to = r2.from.

We denote by ≺+
P the transitive closure of ≺P . If r1 ≺+

P r2 ∧ r2 ≺+
P r1, or if r1 = r2, we write r1 ∼P r2.

The precedence relation thus captures the control flow of a process. For instance, in the example of Fig. 1 it captures
that a process must execute rule r4 before it can execute rule r5.

Definition 2 (Unlock relation). For a threshold automaton (L, I, �, �, R, RC), we define the unlock relation ≺U as subset of
R × R as follows: r1 ≺U r2 iff there is a g ∈ N|�|

0 and a p ∈ PRC satisfying

• (g, p) |= r1.ϕ
≤ ∧ r1.ϕ

> ,
• (g, p) �|= r2.ϕ

≤ ∧ r2.ϕ
> , and

• (g + r1.u, p) |= r2.ϕ
≤ ∧ r2.ϕ

> .

In the example of Fig. 1, rule r4 increases the shared variable x, and by that may unlock rule r1. We thus write r4 ≺U r1.
Similarly, r2 unlocks r5 in the example.

Definition 3 (Lock relation). For a threshold automaton (L, I, �, �, R, RC), we define the lock relation ≺L as subset of R ×R
as follows: r1 ≺L r2 iff there is a g ∈ N|�|

0 and a p ∈ PRC satisfying

• (g, p) |= r1.ϕ
≤ ∧ r1.ϕ

> ,
• (g, p) |= r2.ϕ

≤ ∧ r2.ϕ
> , and

• (g + r1.u, p) �|= r2.ϕ
≤ ∧ r2.ϕ

> .

Our analysis in Section 4 will show that only two types of conditions of the threshold automaton contribute to the
diameter we are interested in. First, these are the conditions that appear in a rule r that can be unlocked by a rule r′ that
comes after rule r or is parallel to r in the control flow. More precisely, rule r′ does not appear before r in the control flow.
The other conditions we are interested in are those that appear in a rule r that can be locked by a rule r′′ that is before r
or parallel to r in the control flow; more precisely, r′′ does not appear after r in the control flow. This leads to the definition
of the following quantities.

99

I. Konnov et al. / Information and Computation 252 (2017) 95–109 99

Definition 4 (Number of relevant conditions). Given a threshold automaton (L, I, �, �, R, RC), we define the following quan-
tities:

C≤ = |{r.ϕ≤ : r ∈ R,∃r′ ∈ R. r′ �≺+
P r ∧ r′ ≺U r}|

C> = |{r.ϕ> : r ∈ R,∃r′′ ∈ R. r �≺+
P r′′ ∧ r′′ ≺L r}|

C = C≤ + C>.

To determine these quantities, we have to check whether a specific condition can potentially lock (or unlock) another
one, as defined in Definition 2 (or Definition 3). Observe that this can be done efficiently using an SMT solver.

We consider specific threshold automata, namely those that naturally capture FTDAs, where rules that form cycles do
not increase shared variables.

Definition 5 (Canonical threshold automaton). A threshold automaton (L, I, �, �, R, RC) is canonical, if r.u = 0 for all rules
r ∈ R that satisfy r ≺+

P r.

The relation ∼P defines equivalence classes of rules. For a given set of rules R let R/∼ be the set of equivalence classes
defined by ∼P . We denote by [r] the equivalence class of rule r. For two classes c1 and c2 from R/∼ we write c1 ≺C c2 iff
there are two rules r1 and r2 in R satisfying [r1] = c1 and [r2] = c2 and r1 ≺+

P r2 and r1 �∼P r2. Observe that the relation ≺C

is a strict partial order (irreflexive and transitive). Hence, there are linear extensions of ≺C . Below, we fix an arbitrary of
these linear extensions. We will later use it to sort transitions in a schedule.

Notation. We denote by ≺lin
C a linear extension of ≺C .

Proposition 6. If [r2] ≺lin
C [r1] then r1 �≺+

P r2 .

Proof. Suppose by contradiction that [r2] ≺lin
C [r1] and r1 ≺+

P r2. We derive a contradiction by distinguishing two cases:

• if r1 �∼P r2, then by the definition of ≺C , we get [r1] ≺C [r2];
• otherwise, that is, if r1 ∼P r2, it follows that [r1] = [r2].

In both cases we derive a contradiction to [r2] ≺lin
C [r1]. �

The semantics of threshold automata are defined with respect to counter systems in the following section.

3.2. Counter systems

Given a threshold automaton TA = (L, I, �, �, R, RC) and admissible parameter values p ∈ PRC , we define in the fol-
lowing a counter system as a transition system (, I, R) that consists of the set of configurations 	, the set of initial
configurations I , and the transition relation R .

Configurations A configuration σ = (κ, g, p) consists of a vector of counter values σ .κ ∈ N|L|
0 , a vector of shared variable val-

ues σ .g ∈ N|�|
0 , and a vector of parameter values σ .p = p. The set 	 is the set of all configurations. The function N : PRC → N0

formalizes the number of processes to be modeled. In our example, the number of processes is given by the value of the
parameter n. In [14], we discussed a case study where N(n, t, f) = n − f . The set of initial configurations I contains the
configurations that satisfy

• σ .g = 0,
• ∑

i∈I σ .κ[i] = N(p), and
• ∑

i �∈I σ .κ[i] = 0.

Transition relation A transition is a pair t = (rule, factor) of a rule of the threshold automaton and a non-negative inte-
ger called the acceleration factor, or just factor for short. To simplify notation, for a transition t = (rule, factor) we refer
by t.u and t.ϕ> etc. to rule.u and rule.ϕ> etc., respectively. We say a transition t is unlocked in configuration σ if
∀k ∈ {0, . . . , t.factor − 1}. (σ .κ, σ .g + k · t.u, σ .p) |= t.ϕ≤ ∧ t.ϕ>. For transitions t1 and t2 we say that the two transitions
are related iff t1.rule and t2.rule are related, e.g., t1 ≺P t2 iff t1.rule ≺P t2.rule.

A transition t is applicable to (or enabled in) configuration σ , if it is unlocked, and if σ .κ[t.from] ≥ t.factor. We say that σ ′
is the result of applying the (enabled) transition t to σ , and use the notation σ ′ = t(σ), if

100

100 I. Konnov et al. / Information and Computation 252 (2017) 95–109

• t is enabled in σ
• σ ′.g = σ .g + t.factor · t.u
• σ ′.p = σ .p
• if t.from �= t.to then

– σ ′.κ[t.from] = σ .κ[t.from] − t.factor,
– σ ′.κ[t.to] = σ .κ[t.to] + t.factor, and
– for all � in L \ {t.from, t.to} it holds that σ ′.κ[�] = σ .κ[�]

• if t.from = t.to then σ ′.κ = σ .κ

The transition relation R ⊆ 	 × 	 of the counter system is defined as follows: (σ , σ ′) ∈ R iff there is a r ∈ R and a
k ∈ N0 such that σ ′ = t(σ) for t = (r, k). As updates to shared variables do not decrease their values, we obtain:

Proposition 7. For all configurations σ , all rules r, and all transitions t applicable to σ , the following holds:

1. If σ |= r.ϕ≤ then t(σ) |= r.ϕ≤

2. If t(σ) �|= r.ϕ≤ then σ �|= r.ϕ≤

3. If σ �|= r.ϕ> then t(σ) �|= r.ϕ>

4. If t(σ) |= r.ϕ> then σ |= r.ϕ>

The proposition formalizes a crucial property of our systems that will allow us to bound the diameter below: For in-
stance, by repeated application of points 1 and 2 we obtain that once a condition of form ϕ≤ evaluates to true it will
always do so in the future, while if ϕ≤ evaluates to false, it always has in the past. We conclude that for each condition, the
evaluation changes at most once.

Schedules A schedule is a sequence of transitions. A schedule τ = t1, . . . , tm is called applicable to configuration σ0, if there
is a sequence of configurations σ1, . . . , σm such that σi = ti(σi−1) for 0 < i ≤ m. A schedule t1, . . . , tm where ti .factor = 1 for
0 < i ≤ m is a conventional schedule. If there is a ti .factor > 1, then a schedule is called accelerated.

We write τ · τ ′ to denote the concatenation of two schedules τ and τ ′ , and treat a transition t as schedule. If τ =
τ1 · t · τ2 · t′ · τ3, for some τ1, τ2, and τ3, we say that transition t precedes transition t′ in τ , and denote this by t →τ t′ .

4. Diameter of counter systems

In this section, we will present the outline of the proof of our main theorem:

Theorem 8. Given a canonical threshold automaton TA, for each p in PRC the diameter of the counter system is less than or equal to
d(TA) = (C + 1) · |R| + C , and thus independent of p.

From the theorem it follows that for all parameter values, reachability in the counter system can be verified by exploring
runs of length at most d(TA). However, the theorem alone is not sufficient to solve the parameterized model checking
problem. For this, we combine the bound with the abstraction method in [14]. More precisely, the counter abstraction
in [14] simulates the counter systems for all parameter values that satisfy the resilience condition. Consequently, the bound
on the length of the run of the counter systems entails a bound for the counter abstraction. As we explain in Section 4.5,
we exploit this in the experiments in Section 5.

4.1. Proof idea

Given a rule r, a schedule τ and two transitions ti and t j , with ti →τ t j , the subschedule ti · . . . · t j of τ = t1, . . . , tm is
a batch of rule r if t�.rule = r for i ≤ � ≤ j, and if the subschedule is maximal, that is, i = 1 ∨ ti−1 �= r and j = m ∨ t j+1 �= r.
Similarly, we define a batch of a class c as a subschedule ti · . . . · t j where [r�] = c for i ≤ � ≤ j, and where the subschedule
is maximal as before.

Definition 9 (Sorted schedule). Given a schedule τ , and the relation ≺lin
C , we define sort(τ) as the schedule that satisfies:

1. sort(τ) is a permutation of schedule τ ;
2. two transitions from the same equivalence class maintain their relative order, that is, if t →τ t′ and t ∼P t′ , then

t →sort(τ) t′;
3. if t →sort(τ) t′ , then t ∼P t′ or [t] ≺lin

C [t′].

Proposition 10. Given a schedule τ , and the relation ≺lin
C , for each equivalence class defined by ∼P there is at most one batch in

sort(τ).

101

I. Konnov et al. / Information and Computation 252 (2017) 95–109 101

Proof. Assume by contradiction that there are two batches, that is, there is an equivalence class c such that there are two
transitions t1 and t2 in c, and there is a transition t′ �∈ c such that t1 →sort(τ) t′ and t′ →sort(τ) t2. By Definition 9(3) it
follows from t1 →sort(τ) t′ that c ≺lin

C [t′] and from t′ →sort(τ) t2 that [t′] ≺lin
C c. As ≺lin

C is a total order we arrive at the
required contradiction. �

Note that from Proposition 10 and Definition 9 (Points 1 and 2) it follows that sort(τ) is indeed unique for a given τ .

The crucial observation to prove Theorem 8 is that if we have a schedule τ1 = t · t′ applicable to configuration σ
with t.rule = t′.rule, we can replace it with another applicable (one-transition) schedule τ2 = t′′ , with t′′.rule = t.rule and
t′′.factor = t.factor + t′.factor, such that τ1(σ) = τ2(σ). Thus, we can reach the same configuration with a shorter schedule.
More generally, we may replace a batch of a rule by a single accelerated transition whose factor is the sum of all factors in
the batch.

To bound the diameter, we have to bound the distance between any two configurations σ and σ ′ for which there is a
schedule τ applicable to σ satisfying σ ′ = τ (σ). A simple case is if sort(τ) is applicable to σ and each equivalence class
defined by the precedence relation consists of a single rule (e.g., the threshold automaton is a directed acyclic graph). Then
by Proposition 10 we have at most |R| batches in sort(τ), that is, one per rule. By the reasoning of above we can replace
each batch by a single accelerated transition.

However, in general sort(τ) may not be applicable to σ , or there are equivalence classes containing multiple rules, i.e.,
rules form cycles in the precedence relation. The first issue comes from locking and unlocking, and as discussed in Section 2,
we identify milestone transitions, and show that we can apply sort to the segments between milestones in Section 4.3. We
also deal with the issue of cycles in the precedence relation. It is ensured by sort that within a segment, all transitions that
belong to a cycle form a batch. In Section 4.2, we replace such a batch by a batch where the remaining rules do not form a
cycle. Removing cycles requires the assumption that shared variables are not incremented in cycles.

4.2. Dealing with cycles

We consider the distance between two configurations σ and σ ′ that satisfy σ .g = σ ′.g, i.e., along any schedule con-
necting these configurations, the values of shared variables are unchanged, and so are thus the evaluations of guards. By
Definition 5, we can apply this section’s result to batches of a class of canonical threshold automata. The following definition
captures how often processes go to and leave specific states, respectively, and the updates on the variables.

Definition 11. Given a schedule τ = t1, t2, . . . tk , we denote by |τ | the length k of the schedule. Further, we define the
following vectors

in(τ)[�] =
∑

1≤i≤|τ |
ti .to=�

ti .factor,

out(τ)[�] =
∑

1≤i≤|τ |
ti .from=�

ti .factor,

up(τ) =
∑

1≤i≤|τ |
ti .u.

From the definition of a counter system, we directly obtain:

Proposition 12. For all configurations σ , and all schedules τ applicable to σ , if σ ′ = τ (σ), then σ ′.κ = σ .κ + in(τ) − out(τ), and
σ ′.g = σ .g + up(τ).

The proposition directly implies the following:

Proposition 13. For all configurations σ , and all schedules τ and τ ′ applicable to σ , if in(τ) − out(τ) = in(τ ′) − out(τ ′), and
up(τ) = up(τ ′), then τ (σ) = τ ′(σ).

Given a schedule τ = t1, t2, . . . we say that the index sequence i(1), . . . , i(j) is a cycle in τ , if for all b, 1 ≤ b < j, it holds
that ti(b).to = ti(b+1).from, and ti(j).to = ti(1).from, and ti(c) �= ti(d) for 1 ≤ c < d ≤ j. Let R(τ) be the set of rules appearing
in τ , that is, {r : ti ∈ τ ∧ ti .rule = r}.

In the following proposition we are concerned with removing cycles, without considering applicability of the resulting
schedule. We consider applicability later in Theorem 16.

102

102 I. Konnov et al. / Information and Computation 252 (2017) 95–109

Proposition 14. For all schedules τ , if τ contains a cycle, then there is a schedule τ ′ satisfying |τ ′| < |τ |, in(τ) − out(τ) = in(τ ′) −
out(τ ′), and R(τ ′) ⊆ R(τ).

Proof. Let I = i(1), . . . , i(j) be a cycle in τ = t1, t2, . . . , let τI = ti(1), . . . , ti(j) , and let θ be the schedule t′
1, . . . , t

′
j satisfying

for 1 ≤ k ≤ j that

• t′
k.rule = ti(k).rule, and

• t′
k.factor = ti(k).factor − min{tb.factor : b ∈ I}.

As I is a cycle, by definition, for each local state s, the number of transitions that go out of s is equal to the number of
transitions that enter s, that is, |{b : b ∈ I, tb.from = s}| = |{b : b ∈ I, tb.to = s}|. As θ is constructed from τI by reducing the
factor of each transition by min{tb.factor : b ∈ I}, it follows that:

in(θ) − out(θ) = in (τI) − out (τI) (1)

Denote with τ [θ/I] the schedule obtained from τ by substituting all transitions in the positions i(1), i(2), . . . , i(j) with
the transitions t′

1, t
′
2, . . . , t

′
j of the schedule θ , respectively. From (1), we immediately conclude that in(τ) − out(τ) =

in(τ [θ/I]) − out(τ [θ/I]). Further, by construction, the schedule θ contains at least one transition t′
k with t′

k.factor = 0
for 1 ≤ k ≤ j. Let τ ′ be the schedule obtained from the schedule τ [θ/I] by removing all the transitions in the positions
i(1), i(2), . . . , i(j) that have factor equal to zero. As removal of such transitions does not change in and out, we immediately
conclude that in(τ ′) − out(τ ′) = in(τ [θ/I]) − out(τ [θ/I]) and thus in(τ ′) − out(τ ′) = in(τ) − out(τ). Moreover, as we have
removed at least one transition, it holds that |τ ′| < |τ |, and as we have not added new rules, it holds that R(τ ′) ⊆ R(τ). �

Repeated application of the proposition leads to a cycle-free schedule (possibly the empty schedule), and we obtain:

Theorem 15. For all schedules τ , there is a schedule τ ′ that contains no cycles, in(τ) −out(τ) = in(τ ′) −out(τ ′), and R(τ ′) ⊆ R(τ).

The issue with this theorem is that τ ′ is not necessarily applicable to the same configurations as τ . In the following
theorem, we prove that if a schedule satisfies a specific condition on the order of transitions, then it is applicable.

Theorem 16. Let σ and σ ′ be two configurations with σ .g = σ ′.g, and τ be a schedule with up(τ) = 0, every transition t is unlocked
in σ and satisfies t.from �= t.to, and where if ti →τ t j , then t j �≺P ti . If σ ′.κ − σ .κ = in(τ) − out(τ), then τ is applicable to σ .

Proof. The proof is by induction on |τ |.
Base: |τ | = 0. Follows trivially.
Step: |τ | > 0. Let τ = t · τ ′ for some τ ′ . We first prove that t is applicable to σ , and then that t(σ) and τ ′ satisfy the
induction hypothesis. Then, the theorem follows.

By assumption, τ ′ does not contain a transition t′ satisfying t′ ≺P t , that is, for all ti in τ ′ , ti .to �= t.from, and by assump-
tion, t.from �= t.to, and therefore

in(τ)[t.from] = 0 (2)

Recall that from the definition of a configuration,

σ ′.κ[t.from] ≥ 0. (3)

By assumption

σ ′.κ[t.from] − σ .κ[t.from] = in(τ)[t.from] − out(τ)[t.from].
Applying (3) we obtain σ .κ[t.from] ≥ out(τ)[t.from] − in(τ)[t.from], and further from (2) we get σ .κ[t.from] ≥
out(τ)[t.from]. As t is in τ , from Definition 11 follows that out(τ)[t.from] ≥ t.factor, and finally σ .κ [t.from] ≥ t.factor. It
follows that t is applicable to σ .

It remains to prove that

σ ′.κ − t(σ).κ = in(τ ′) − out(τ ′), (4)

which allows us to invoke the induction hypothesis. To do so, we consider the components of σ .κ . Observe that for all local
states s, s �∈ {t.from, t.to}, we have t(σ).κ[s] = σ .κ[s], in(τ ′)[s] = in(τ)[s], and out(τ ′)[s] = out(τ)[s].

Hence, σ ′.κ[s] − t(σ).κ[s] = in(τ ′)[s] − out(τ ′)[s]. To prove (4), it remains to consider the indices t.from and t.to. Recall
that by assumption, t.from �= t.to.

103

I. Konnov et al. / Information and Computation 252 (2017) 95–109 103

Component t.from of (4). The counter for t.from changes, that is, σ .κ[t.from] = t(σ).κ[t.from] + t.factor. As τ ′ is obtained
by removing t from τ , we have out(τ)[t.from] = out(τ ′)[t.from] + t.factor, and in(τ)[t.from] = in(τ ′)[t.from].

From the assumption σ ′.κ − σ .κ = in(τ) − out(τ) it follows that

σ ′.κ[t.from] − t(σ).κ[t.from] − t.factor = in(τ ′)[t.from] − out(τ ′)[t.from] − t.factor,

and the case follows.
Component t.to of (4). The counter for t.to changes, that is, σ .κ[t.to] = t(σ).κ[t.to] − t.factor. As τ ′ is obtained by remov-

ing t from τ , we have in(τ)[t.to] = in(τ ′)[t.from] + t.factor and out(τ)[t.to] = out(τ ′)[t.to].
Again, it follows from the assumption that

σ ′.κ[t.to] − t(σ).κ[t.to] + t.factor = in(τ ′)[t.to] + t.factor − out(τ ′)[t.to].
Hence σ ′.κ − t(σ).κ = in(τ ′) − out(τ ′), and the theorem follows. �
Given a configuration σ , and a schedule τ applicable to σ , with up(τ) = 0, by Theorem 15 there is a cycle-free schedule

τ ′ with in(τ) − out(τ) = in(τ ′) − out(τ ′), and R(τ ′) ⊆ R(τ). As τ ′ contains no cycle, we may re-order the transitions in
τ ′ according to ≺P , as required by Theorem 16, such that there is at most one block per rule. By Theorem 16, the resulting
schedule is applicable, and we obtain:

Corollary 17. For all configurations σ , and all schedules τ applicable to σ , with up(τ) = 0, there is a schedule with at most one batch
per rule applicable to σ satisfying that τ ′ contains no cycles, τ ′(σ) = τ (σ), and R(τ ′) ⊆ R(τ).

4.3. Defining milestones and swapping transitions

In this section we deal with locking and unlocking. To this end, we define milestones, and show that transitions that are
not milestones can be swapped.

Proposition 18. For all configurations σ , and all transitions t1 and t2 , if t2 is applicable to t1(σ) and t1 is applicable to t2(σ), then
t2(t1(σ)) = t1(t2(σ)).

Proof. Follows from commutativity of addition applied to counters and shared variables. �
As discussed in Section 4.1, we would like to replace a schedule (or subschedule) τ by sort(τ), so that the resulting

schedule sort(τ) is applicable. To do so, we have to show that if we start with τ and swap adjacent transitions until we
reach sort(τ), all the intermediate schedules and the final schedule are applicable. However, due to locking and unlocking,
we cannot always swap transitions. For instance, if t′ appears directly before t in a schedule, and t′ unlocks t (that is, t is
locked in the configuration in which t′ is applied and unlocked after the application of t′), swapping t′ and t leads to a
schedule which is not applicable. This is because t is not applicable. We observe that this problem occurs

• because we want to swap t′ and t (t is before t′ in the linear extension of the precedence relation, that is, t′ is not
before t in the precedence relation),

• t′ unlocks t , and
• t is locked in the beginning.

In such cases, t must not be moved “to the left” in the schedule, and we call t a left milestone. We capture this intuition in
the following definition.

Definition 19 (Left milestone). Given a configuration σ and a schedule τ = τ ′ · t · τ ′′ applicable to σ , the transition t is a left
milestone for σ and τ , if

1. there is a transition t′ in τ ′ satisfying t′ �≺+
P t ∧ t′ ≺U t ,

2. t.ϕ≤ is locked in σ , and
3. for all t′ in τ ′ it holds that t′.ϕ≤ �= t.ϕ≤ .

The following definition of right milestones is analogous but, instead of unlocking and considering transitions that are
locked in the beginning, considers the locking relation and transitions that are locked after application of the schedule.

Definition 20 (Right milestone). Given a configuration σ and a schedule τ = τ ′ · t · τ ′′ applicable to σ , the transition t is a
right milestone for σ and τ , if

104

104 I. Konnov et al. / Information and Computation 252 (2017) 95–109

1. there is a transition t′′ in τ ′′ satisfying t �≺+
P t′′ ∧ t′′ ≺L t ,

2. t.ϕ> is locked in τ (σ), and
3. for all t′′ in τ ′′ it holds that t′′.ϕ> �= t.ϕ> .

Milestones divide schedules into segments that are defined as follows.

Definition 21 (Segment). Given a schedule τ and configuration σ , τ ′ is a segment if it is a subschedule of τ , and does not
contain a milestone for σ and τ .

The following theorem shows that two transitions that are not milestones can be swapped. Together with the fact that
by definition the number of milestones is bounded by C , repeated application of the theorem eventually leads to a schedule
where milestones and sorted schedules alternate.

Theorem 22. Let σ be a configuration, τ a schedule applicable to σ , and τ = τ1 · t1 · t2 · τ2 . If transitions t1 and t2 are not milestones
for σ and τ , and satisfy [t2] ≺lin

C [t1], then

i. schedule τ ′ = τ1 · t2 · t1 · τ2 is applicable to σ , and
ii. τ ′(σ) = τ (σ).

Proof. We prove (i) by showing that (a) t2 is applicable to σ ′ = τ1(σ), and (b) t1 is applicable to t2(σ
′). From (a), (b), and

Proposition 18, Point (i) then follows.
(a) We prove that t2 is applicable to σ ′ by case distinction

• t1 �≺U t2. As the rule of t1 never unlocks the rule of t2, and because t2 is unlocked in t1(σ
′), t2 must also be unlocked

in σ ′ due to Proposition 7.
• Otherwise, that is, t1 ≺U t2. Due to Proposition 6, from [t2] ≺lin

C [t1] follows that t1 �≺+
P t2. It follows that t2 satisfies

Definition 19(1).
Now assume by way of contradiction that t2 is locked in σ ′ . We will show that from this assumption it follows that t2 is
a left milestone2 for σ and τ to derive a contradiction and conclude that t2 is unlocked in σ ′: As t2 is locked in σ ′ , from
repeated application of Proposition 7(2) we obtain that t2.ϕ≤ is locked in σ , and all intermediate configurations until σ ′ .
As it is locked in σ , transition t2 satisfies Definition 19(2). As the transition is locked in all intermediate configurations
no transition that is guarded with the same condition can appear in the prefix, that is, for each transition t′ in τ1 it
holds that t′.ϕ≤ �= t2.ϕ

≤ , which satisfies Definition 19(3). Hence, t2 is a left milestone, which contradicts that t2 is not
a milestone. We conclude that t2 is unlocked in σ ′ .

As t2 is unlocked in σ ′ , by the definition of applicability, it is sufficient to prove that σ ′.κ[t2.from] ≥ t2.factor. By as-
sumption, t2 is applicable to t1(σ

′) so that by the definition of applicability

t1(σ
′).κ[t2.from] ≥ t2.factor (5)

We have to distinguish two cases:

• If t1.from = t2.from, then t1(σ
′).κ[t2.from] = σ ′.κ[t2.from] − t1.factor. From (5) it follows that σ ′.κ[t2.from] ≥ t1.factor +

t2.factor and this case follows.
• Otherwise, that is, if t1.from �= t2.from. Due to Proposition 6, from [t2] ≺lin

C [t1] follows that t1 �≺+
P t2. From t1 �≺+

P t2
follows that t1 �≺P t2 and thus t1.to �= t2.from. Hence, t1(σ

′).κ[t2.from] = σ ′.κ[t2.from]. Consequently, this case follows
at once from (5).

(b) As t1 is applicable to σ ′ , it is unlocked in σ ′ . We again distinguish two cases:

• t2 �≺L t1. As the rule of t2 never locks the rule of t1, and because t1 is unlocked in σ ′ , the transition t1 must also be
unlocked in t2(σ

′).
• Otherwise, that is, t2 ≺L t1. Due to Proposition 6, from [t2] ≺lin

C [t1] follows that t1 �≺+
P t2. Hence, t1 satisfies Defini-

tion 20(1). Now assume by way of contradiction that t1 is locked in t2(σ
′). We will show that t1 is a right milestone

to arrive at the required contradiction: As t1 is unlocked in σ and locked in t2(σ
′), it is locked due to t1.ϕ

> , which
evaluates to false in t2(σ

′). As t1 is locked in t2(σ
′), and as the values of global variables in t2(t1(σ

′)) are greater than
or equal to those of t2(σ

′), it follows that t1.ϕ
> evaluates to false in t2(t1(σ

′)). From this and repeated application

2 Intuitively, as τ ′ is obtained from τ by moving t2 one position to the left, we argue about t2 being a left milestone here. In point (b) below, we view
τ ′ being obtained from τ by moving t1 one position to the right, and consequently derive a contradiction using the notion of right milestone for t1.

105

I. Konnov et al. / Information and Computation 252 (2017) 95–109 105

of Proposition 7(3) we obtain that t1.ϕ
> is locked in τ (σ), which satisfies Definition 20(2). Further as t1 is locked in

t2(σ
′), for each transition t′′ in τ2 it holds that t′′.ϕ> �= t2.ϕ

> , which satisfies Definition 20(3). Hence, t1 is a right
milestone, which provides the required contradiction.

We conclude that t1 is unlocked in t2(σ
′).

It remains to show that t2(σ ′).κ[t1.from] ≥ t1.factor, which can be proven analogously to the argument on counters
in (a).

By assumption, τ2 is applicable to t2(t1(τ1(σ))), and from Proposition 18 follows that t2(t1(τ1(σ))) = t1(t2(τ1(σ))).
Consequently, τ2 is applicable to t1(t2(τ1(σ))). Hence, τ ′ is applicable to σ , and Point (ii) of the theorem statement follows
from Proposition 13. �
4.4. Proof of main theorem

Theorem 8. Given a canonical threshold automaton TA, for each p in PRC the diameter of the counter system is less than or equal to
d(TA) = (C + 1) · |R| + C , and thus independent of p.

Proof. We can view a schedule τ applicable to σ as alternation of segments τi and milestones mi . We obtain from repeated
application of Theorem 22, that each schedule applicable to σ can be transformed into a schedule sort(τ1) · m1 · sort(τ2) ·
m2 · . . . that is also applicable to σ . By Proposition 10 there is at most one batch per equivalence class in sort(τi). If this
equivalence class consists of a single rule, the batch can be replaced by a single (accelerated) transition. Otherwise, that is,
if a class consists of say x rules, as we consider canonical threshold automata that do not have updates to shared variables
in rules r with r ≺+

P r, we can use the construction of Section 4.2 to replace the batch of this class by at most x accelerated
transitions. We arrive at a segment that contains at most one transition per rule, that is, at most |R| transitions. It remains
to bound the number of milestones.

As by Definition 19(3) and Definition 20(3) there is at most one milestone per condition, we have at most C milestones
as defined in Definition 4. To conclude, we obtain an accelerated schedule, consisting of C milestones and C + 1 segments
of length at most |R|. �
4.5. Applying our result

In the proof of Theorem 8, we bound the length of all segments by |R|. However, by Definition 19, segments to the
left of a left milestone cannot contain transitions for rules with the same condition as the milestone. The same is true for
segments to the right of right milestones. As we will see in Section 5.4, our tool ByMC explores all orders of milestones, an
uses this observation about milestones to compute a more precise bound d� for the diameter.

Our encoding of the counter abstraction only increments and decrements counters. If |D̂| is the size of the abstract
domain, a transition in a counter system is simulated by at most |D̂| − 1 steps in the counter abstraction; this leads to the
diameter d̂ for counter abstractions, which we use in our experiments.

5. Experimental evaluation

We have implemented the techniques discussed in this article in our tool ByMC [16]. The input are the descriptions
of our benchmarks given in our parametric extension of Promela [15], which describe parameterized processes. Hence, as
preliminary step, ByMC computes the PIA data abstraction [14] in order to obtain finite state processes. Based on this, ByMC

does preprocessing to compute threshold automata and the locking and unlocking relations, and to generate the inputs for
our model checking back-ends.

5.1. Preprocessing

To apply our results, we have to compute the set of rules R. Recall that a rule is a tuple (from, to, ϕ≤, ϕ>, u). ByMC com-
putes the reachable local states. In the case of the CBC case study, e.g., this step reduces the local states under consideration
from 2000 to 100, approximately. All our experiments — including the ones with FASTer [2] — are based on the reduced
local state space.

Then, for each pair (from, to), ByMC explores symbolic paths to compute the guards and update vectors for the pair,
and removes the infeasible paths using an SMT solver. From this we get the set of rules R. Then, ByMC encodes Def-
inition 2 in the SMT solver Yices, to construct the lock ≺L and unlock ≺U relations. ByMC computes the relations
{(r, r′) : r′ �≺+

P r ∧ r′ ≺U r} and {(r, r′′) : r �≺+
P r′′ ∧ r′′ ≺L r} as required by Definition 4. This provides the bounds we use

for bounded model checking.

106

106 I. Konnov et al. / Information and Computation 252 (2017) 95–109

Table 1
Benchmark overview giving the article from which we formalized
the distributed algorithm, the number of shared variables, and the
model and the size of the abstract domain.

Benchmark Reference Shared vars Abs. domain size

FRB [9] 1 2
STRB [32] 1 4
ABA0 [8] 2 4
ABA1 [8] 2 5
CBC0 [27] 4 4
CBC1 [27] 4 5
NBAC(C) [31] 4 4

5.2. Back-ends

ByMC generates the PIA counter abstraction [14] to be used by the following back-end model checkers. We have also
implemented an automatic abstraction refinement loop for the counterexamples provided by NuSMV.

BMC. NuSMV 2.5.4 [10] (using MiniSAT) performs incremental bounded model checking with the bound d̂. If a coun-
terexample is reported, ByMC refines the system as explained in [14], if the counterexample is spurious.

BMCL. This technique combines the power of NuSMV 2.5.4 and of the state-of-the-art multi-core SAT solver Plin-
geling ats1 [4]. NuSMV performs incremental bounded model checking for 30 steps. If a spurious counterexample
is found, then ByMC refines the system description. When NuSMV does not report a counterexample, NuSMV
generates a single CNF with the bound d̂. Satisfiability of this formula is then checked with Plingeling.

BDD. NuSMV 2.5.4 performs BDD-based symbolic checking.
FAST. FASTer 2.1 [2] performs reachability analysis using the plugin Mona-1.3.

5.3. Benchmarks

We encoded several asynchronous FTDAs in our parametric Promela, following the technique in [15]; they can be ob-
tained from our git repository.3 All models contain transitions with lower threshold guards. The benchmarks CBC also
contain upper threshold guards. If we ignore self-loops, the precedence relation of all but NBAC and NBACC, which have
non-trivial cycles, are partial orders. We provide the most relevant data on these benchmarks in Table 1, and discuss them
in more detail below.

Folklore reliable broadcast (FRB) In this FTDA, n processes have to agree on whether a process has broadcast a message, in
the presence of f ≤ n crashes. Our model of FRB has one shared variable and the abstract domain of two intervals [0, 1)

and [1, ∞). In this paper, we are concerned with the safety property unforgeability: If no process is initialized with value 1
(message from the broadcaster), then no correct process ever accepts.

Consistent broadcast (STRB) Here, we have n − f correct processes and f ≥ 0 Byzantine faulty ones. The resilience condition
is n > 3t ∧ t ≥ f . There is one shared variable and the abstract domain of four intervals [0, 1), [1, t + 1), [t + 1, n − t),
and [n − t, ∞). In the experiments reported here, we check only unforgeability (see FRB), whereas in [14] we checked also
liveness properties.

Byzantine agreement (ABA) There are n > 3t processes, f ≤ t of them Byzantine faulty. The model has two shared variables.
We have to consider two different cases for the abstract domain, namely, case ABA0 with the domain [0, 1), [1, t + 1),
[t +1, �n+t

2 �), and [�n+t
2 �, ∞) and case ABA1 with the domain [0, 1), [1, t +1), [t +1, 2t +1), [2t +1, �n+t

2 �), and [�n+t
2 �, ∞).

As for FRB, we check unforgeability. This case study, and all below, run out of memory when using Spin for model checking
the counter abstraction [14].

Condition-based consensus (CBC) This is a restricted variant of consensus solvable in asynchronous systems. We consider the
binary version of condition-based consensus in the presence of clean crashes, which requires four shared variables. Under
the resilience condition n > 2t ∧ f ≥ 0, we have to consider two different cases depending on f : If f = 0 we have case CBC0
with the domain [0, 1), [1, � n

2 �), [� n
2 �, n − t), and [n − t, ∞). If f �= 0, case CBC1 has the domain: [0, 1), [1, f), [f , � n

2 �),
[� n

2 �, n − t), and [n − t, ∞). We verified several properties, all of which resulted in experiments with similar characteristics.
We only give validity0 in the table, i.e., no process accepts value 0, if all processes initially have value 1.

3 https://github.com/konnov/fault-tolerant-benchmarks/tree/master/concur14.

107

I. Konnov et al. / Information and Computation 252 (2017) 95–109 107

Table 2
Summary of experiments on AMD Opteron®Processor 6272 with 192 GB RAM and 32 CPU cores. Plingeling used up to 16 cores. “TO” denotes timeout of
24 hours; “OOM” denotes memory overrun of 64 GB; “ERR” denotes runtime error; “RTO” denotes that the refinement loop timed out. When BMC and
BMCL times out, we indicate the maximum length of the explored computations in percentage of the predicted diameter bound.

Input
FTDA

Threshold A. Bounds Time, [HH:]MM:SS Memory, GB

|L| |R| C≤ C> d d� d̂ BMCL BMC BDD FAST BMCL BMC BDD FAST

Fig. 1 5 5 1 0 11 9 27 00:00:03 00:00:04 00:01 00:00:08 0.01 0.02 0.02 0.06
FRB 6 8 1 0 17 10 10 00:00:13 00:00:13 00:06 00:00:08 0.01 0.02 0.02 0.01
STRB 7 15 3 0 63 30 90 00:00:09 00:00:06 00:04 00:00:07 0.02 0.03 0.02 0.07
ABA0 37 180 6 0 1266 586 1758 00:21:26 02:20:10 00:15 00:08:40 6.37 1.49 0.07 3.56
ABA1 61 392 8 0 3536 1655 6620 TO 25% TO 12% 00:33 02:36:25 TO TO 0.08 15.65
CBC0 43 204 0 0 204 204 612 01:38:54 TO 57% OOM ERR 1.28 TO OOM ERR

CBC1 115 896 1 1 2690 2180 8720 TO 05% TO 11% TO TO TO TO TO TO

NBACC 109 1724 6 0 12 074 5500 16 500 RTO RTO TO TO RTO RTO TO TO

NBAC 77 1356 6 0 9498 4340 13 020 RTO RTO TO TO RTO RTO TO TO

When a Bug is Introduced

ABA0 32 139 6 0 979 469 1407 00:00:16 00:00:18 TO 00:05:57 0.04 0.04 TO 2.70
ABA1 54 299 8 0 2699 1305 5220 00:00:22 00:00:21 TO ERR 0.06 0.06 TO ERR

Non-blocking atomic commitment (NBAC and NBACC) Here, n processes are initialized with Yes or No and decide on whether
to commit a transaction. The transaction must be aborted if at least one process is initialized to No. We consider the cases
NBACC and NBAC of clean crashes and crashes, respectively. Both models contain four shared variables, and the abstract
domain is [0, 1) and [1, n) and [n − 1, n), and [n, ∞). The algorithm uses a failure detector, which is modeled as local
variable that changes its value non-deterministically.

5.4. Evaluation

Table 2 summarizes the experiments. For the threshold automata, we give the number of local states |L|, the number of
rules |R|, and conditions according to Definition 4, i.e., C≤ and C> . The column d provides the bound on the diameter as
in Theorem 8, whereas the column d� provides an improved diameter, and d̂ the diameter of the counter abstraction, both
discussed in Section 4.5.

As the experiments show, all techniques rapidly verify FRB, STRB, and Fig. 1. We had already verified FRB and STRB before
using Spin [14]. The more challenging examples are ABA0 and ABA1, where BDD clearly outperforms the other techniques.
Bounded model checking is slower here, because the diameter bound does not exploit knowledge on the specification. FAST

performs well on these benchmarks. We believe this is because many rules are always disabled, due to the initial states as
given in the specification. To confirm this intuition, we introduced a bug into ABA0 and ABA1, which allows the processes
to non-deterministically change their value to 1. This led to a dramatic slowdown of BDD and FAST, as reflected in the last
two lines.

Using the bounds of this paper, BMCL verified CBC0, whereas all other techniques failed. BMCL did not reach the bounds
for CBC1 with our experimental setup. In this case, we report the percentages of the bounds we reached with bounded
model checking.

In the experiments with NBAC and NBACC, the refinement loop timed out. We are convinced that we can address this
issue by integrating the refinement loop with an incremental bounded model checker.

While we could not check all the benchmarks with the technique of this paper, a more aggressive offline partial order
reduction in combination with SMT-based bounded model checking [17] allowed us to verify also these benchmarks.

6. Related work and discussions

Specific forms of counter systems can be used to model parameterized systems of concurrent processes. Lubachevsky [25]
discusses compact programs that reach each state in a bounded number of steps, where the bound is independent of the
number of processes. Besides, in [25] he gives examples of compact programs, and in [24] he proves that specific semaphore
programs are compact. We not only show compactness, but give a bound on the diameter. In our case, communication is
not restricted to semaphores, but we have threshold guards. Counter abstraction [30] follows this line of research, but as
discussed by Basler et al. [3], does not scale well for large numbers of local states.

Another line of research is on acceleration in infinite state systems, e.g., in flat counter automata [22]. Acceleration is a
technique that computes the transitive closure of a transition relation and applies it to the set of states. The tool FAST [1]
uses the transitive closure of transitions to compute the set of reachable states in a symbolic procedure. This appears closely
related to our transitions with acceleration factor. However, in [1] a transition is chosen and accelerated dynamically in the
course of symbolic state space exploration, while we use acceleration factors and reordering to construct a bound as a
formula over the characteristics of a threshold automaton (precedence, lock, and unlock relations). Our tool generates the
cardinalities of these relations to compute length of computations for bounded model checking.

108

108 I. Konnov et al. / Information and Computation 252 (2017) 95–109

One can achieve completeness in bounded model checking by exploring all runs that are not longer than the diameter
of the system [5]. This was later generalized to the notion of completeness threshold by Clarke et al. [11] in the presence
of safety and liveness properties. To find a completeness threshold for a liveness property, it is sufficient to compute the
diameter of the synchronous product of the transition system and a Büchi automaton, which represents the computations
violating the property. As in general, computing the diameter is believed to be as hard as model checking, one can use a
coarser bound provided by the reoccurrence diameter [19]. In practice, the reoccurrence diameter of counter abstraction is
prohibitively large, so that we are interested bounds on the diameter.

Partial orders are a useful concept when reasoning about distributed systems [20]. In the context of model checking,
partial order reduction [13,33,29] is a widely used technique to reduce the search space. It is based on the idea that changing
the order of steps of concurrent processes leads to “equivalent” behavior with respect to the specification. Typically, partial
order reduction is used on-the-fly to prune runs that are equivalent to representative ones. In contrast, in this paper, we
bound the length of representative runs offline in order to ensure completeness of bounded model checking. Based on the
ideas presented here, in [17] we introduce a more aggressive form of partial order reduction that, together with an encoding
of a counter system in SMT, allowed us to verify reachability of even more involved fault-tolerant distributed algorithms.
In the context of FTDAs, a partial order reduction was introduced by Bokor et al. [7]. Similar to this paper, they focus on
“quorum transitions” that count messages. The technique by Bokor et al. [7] can be used for model checking small instances,
while we focus on parameterized model checking.

Our technique of determining which transitions can be swapped in a run reminds of movers as discussed by Lipton [23],
or more generally the idea to show that certain actions can be grouped into larger atomic blocks to simplify proofs [12,21].
However, movers address the issue of grouping many local transitions of a process together. In contrast, we conceptually
group transitions of different processes together into one accelerated transition. Moreover, the definition of a mover by
Lipton is independent of a specific run: a left mover (e.g., a “release” operation) is a transition that in all runs can “move to
the left” with respect to transitions of other processes. In our work, we look at specific runs and identify which transitions
(milestones) must not move in this run.

Our technique targets at threshold-based fault-tolerant distributed algorithms, that is, asynchronous distributed algo-
rithms that communicate by sending messages to all and compare the number of received messages to linear combinations
of parameters. As motivated by this application domain (and as discussed in the introduction), the systems we consider are
symmetric, and the threshold automata we consider are restricted in that shared variables cannot be decreased, and rules
that form a cycle in a threshold automaton may not increase shared variables. To model concurrent systems other than
fault-tolerant distributed algorithms, it may be interesting to weaken the latter two restrictions. Our results on the diameter
do not necessarily carry over to less restricted threshold automata and counter systems.

As next steps we will focus on liveness of fault-tolerant distributed algorithms. In fact the liveness specifications are
in the fragment of linear temporal logic for which it is proven [18] that a formula can be translated into a cliquey Büchi
automaton. For such automata, Kroening et al. provide a completeness threshold. Still, there are open questions related to
applying our results to the idea by Kroening et al. [18].

References

[1] S. Bardin, A. Finkel, J. Leroux, L. Petrucci, FAST: acceleration from theory to practice, Int. J. Softw. Tools Technol. Transf. 10 (5) (2008) 401–424.
[2] S. Bardin, J. Leroux, G. Point, Fast extended release, in: CAV, in: LNCS, vol. 4144, 2006, pp. 63–66.
[3] G. Basler, M. Mazzucchi, T. Wahl, D. Kroening, Symbolic counter abstraction for concurrent software, in: CAV, in: LNCS, vol. 5643, 2009, pp. 64–78.
[4] A. Biere, Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013, Proceedings of SAT Competition 2013: Solver and Benchmark

Descriptions, 2013, pp. 51–52.
[5] A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs, in: TACAS, in: LNCS, vol. 1579, 1999, pp. 193–207.
[6] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder, Decidability of parameterized verification, in: Synthesis Lectures on Distributed

Computing Theory, 2015.
[7] P. Bokor, J. Kinder, M. Serafini, N. Suri, Efficient model checking of fault-tolerant distributed protocols, in: DSN, 2011, pp. 73–84.
[8] G. Bracha, S. Toueg, Asynchronous consensus and broadcast protocols, J. ACM 32 (4) (1985) 824–840.
[9] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, J. ACM 43 (2) (March 1996) 225–267.

[10] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV 2: an opensource tool for symbolic model
checking, in: CAV, in: LNCS, vol. 2404, 2002, pp. 359–364.

[11] E.M. Clarke, D. Kroening, J. Ouaknine, O. Strichman, Completeness and complexity of bounded model checking, in: VMCAI, in: LNCS, vol. 2937, 2004,
pp. 85–96.

[12] T.W. Doeppner, Parallel program correctness through refinement, in: POPL, 1977, pp. 155–169.
[13] P. Godefroid, Using partial orders to improve automatic verification methods, in: CAV, in: LNCS, vol. 531, 1990, pp. 176–185.
[14] A. John, I. Konnov, U. Schmid, H. Veith, J. Widder, Parameterized model checking of fault-tolerant distributed algorithms by abstraction, in: FMCAD,

2013, pp. 201–209.
[15] A. John, I. Konnov, U. Schmid, H. Veith, J. Widder, Towards modeling and model checking fault-tolerant distributed algorithms, in: SPIN, in: LNCS,

vol. 7976, 2013, pp. 209–226.
[16] I. Konnov, ByMC: Byzantine model checker, http://forsyte.tuwien.ac.at/software/bymc/, 2015, accessed: Dec. 1.
[17] I. Konnov, H. Veith, J. Widder, SMT and POR beat counter abstraction: parameterized model checking of threshold-based distributed algorithms, in:

CAV (Part I), in: LNCS, vol. 9206, 2015, pp. 85–102.
[18] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, J. Worrell, Linear completeness thresholds for bounded model checking, in: CAV, in: LNCS, vol. 6806,

2011, pp. 557–572.
[19] D. Kroening, O. Strichman, Efficient computation of recurrence diameters, in: VMCAI, in: LNCS, vol. 2575, 2003, pp. 298–309.
[20] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun. ACM 21 (7) (1978) 558–565.

109

I. Konnov et al. / Information and Computation 252 (2017) 95–109 109

[21] L. Lamport, F.B. Schneider, Pretending atomicity, Tech. rep. 44, SRC, 1989.
[22] J. Leroux, G. Sutre, Flat counter automata almost everywhere!, in: ATVA, in: LNCS, vol. 3707, 2005, pp. 489–503.
[23] R.J. Lipton, Reduction: a method of proving properties of parallel programs, Commun. ACM 18 (12) (1975) 717–721.
[24] B.D. Lubachevsky, An approach to automating the verification of compact parallel coordination programs, II, Tech. rep. 64, New York University, Com-

puter Science Department, 1983.
[25] B.D. Lubachevsky, An approach to automating the verification of compact parallel coordination programs. I, Acta Inform. 21 (2) (1984) 125–169.
[26] N. Lynch, Distributed Algorithms, Morgan, Kaufman, 1996.
[27] A. Mostéfaoui, E. Mourgaya, P.R. Parvédy, M. Raynal, Evaluating the condition-based approach to solve consensus, in: DSN, 2003, pp. 541–550.
[28] M. Pease, R. Shostak, L. Lamport, Reaching agreement in the presence of faults, J. ACM 27 (2) (1980) 228–234.
[29] D. Peled, All from one, one for all: on model checking using representatives, in: CAV, in: LNCS, vol. 697, 1993, pp. 409–423.
[30] A. Pnueli, J. Xu, L. Zuck, Liveness with (0, 1, ∞)-counter abstraction, in: CAV, in: LNCS, vol. 2404, Springer, 2002, pp. 93–111.
[31] M. Raynal, A case study of agreement problems in distributed systems: non-blocking atomic commitment, in: HASE, 1997, pp. 209–214.
[32] T. Srikanth, S. Toueg, Simulating authenticated broadcasts to derive simple fault-tolerant algorithms, Distrib. Comput. 2 (1987) 80–94.
[33] A. Valmari, Stubborn sets for reduced state space generation, in: Advances in Petri Nets 1990, in: LNCS, vol. 483, Springer, 1991, pp. 491–515.

110

Chapter 5

Para2: parameterized path reduction, accel-

eration, and SMT for reachability in threshold-

guarded distributed algorithms

Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. Para2:
parameterized path reduction, acceleration, and SMT for reachability in
threshold-guarded distributed algorithms. Journal of Formal Methods in
System Design, vol. 51, no. 2, pp. 270-307, 2017.

doi: http://dx.doi.org/10.1007/s10703-017-0297-4

111

http://dx.doi.org/10.1007/s10703-017-0297-4

Form Methods Syst Des (2017) 51:270–307
DOI 10.1007/s10703-017-0297-4

Para2: parameterized path reduction, acceleration,
and SMT for reachability in threshold-guarded
distributed algorithms

Igor Konnov1 · Marijana Lazić1 · Helmut Veith1 ·
Josef Widder1

Published online: 20 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract Automatic verification of threshold-based fault-tolerant distributed algorithms
(FTDA) is challenging: FTDAs have multiple parameters that are restricted by arithmetic
conditions, the number of processes and faults is parameterized, and the algorithm code is
parameterized due to conditions counting the number of received messages. Recently, we
introduced a technique that first applies data and counter abstraction and then runs bounded
model checking (BMC). Given an FTDA, our technique computes an upper bound on the
diameter of the system. This makes BMC complete for reachability properties: it always
finds a counterexample, if there is an actual error. To verify state-of-the-art FTDAs, further
improvement is needed. In contrast to encoding bounded executions of a counter system over
an abstract finite domain in SAT, in this paper, we encode bounded executions over integer
counters in SMT. In addition, we introduce a new form of reduction that exploits acceleration

Supported by: the Austrian Science Fund (FWF) through the National Research Network RiSE (S11403 and
S11405), project PRAVDA (P27722), and Doctoral College LogiCS (W1255-N23); and by the Vienna
Science and Technology Fund (WWTF) through project APALACHE (ICT15-103). This is an extended
version of the paper “SMT and POR beat Counter Abstraction: Parameterized Model Checking of
Threshold-Based Distributed Algorithms” that appeared in CAV (Part I), volume 9206 of LNCS, pages
85–102, 2015.

B Josef Widder
widder@forsyte.at
http://forsyte.at/widder

Igor Konnov
konnov@forsyte.at
http://forsyte.at/konnov

Marijana Lazić
lazic@forsyte.at
http://forsyte.at/lazic

Helmut Veith
veith@forsyte.at
http://forsyte.at/veith

1 Institute of Information Systems E184/4, TU Wien (Vienna University of Technology),
Favoritenstraße 9-11, 1040 Vienna, Austria

123

112

Form Methods Syst Des (2017) 51:270–307 271

and the structure of the FTDAs. This aggressively prunes the execution space to be explored
by the solver. In this way, we verified safety of seven FTDAs that were out of reach before.

Keywords Parameterized verification · Bounded model checking · Completeness · Partial
orders in distributed systems · Reduction · Fault-tolerant distributed algorithms · Byzantine
faults

1 Introduction

Replication is a classic approach to make computing systems more reliable. In order to
avoid a single point of failure, one uses multiple processes in a distributed system. Then,
if some of these processes fail (e.g., by crashing or deviating from their expected behavior)
the distributed system as a whole should stay operational. For this purpose one uses fault-
tolerant distributed algorithms (FTDAs). These algorithms have been extensively studied in
distributed computing theory [1,50], and found application in safety critical systems (auto-
motive or aeronautic industry). With the recent advent of data centers and cloud computing
we observe growing interest in fault-tolerant distributed algorithms, and their correctness,
also for more mainstream computer science applications [19,20,31,47,52,54,60].

We consider automatic verification techniques specifically for threshold-based fault-
tolerant distributed algorithms. In these algorithms, processes collect messages from their
peers, and check whether the number of received messages reaches a threshold, e.g., a thresh-
old may ensure that acknowledgments from a majority of processes have been received.
Waiting for majorities, or more generally waiting for quorums, is a key pattern of many fault-
tolerant algorithms, e.g., consensus, replicated state machine, and atomic commit. In [34] we
introduced an efficient encoding of these algorithms, which we used in [33] for abstraction-
based parameterized model checking of safety and liveness of several case study algorithms,
which are parameterized in the number of processes n and the fraction of faults t , e.g., n > 3t .
In [41] we were able to verify reachability properties of more involved algorithms by apply-
ing bounded model checking. We showed how to make bounded model checking complete
in the parameterized case. In particular, we considered counter systems where we record for
each local state, how many processes are in this state. We have one counter per local state �,
denoted by κ[�]. A process step from local state � to local state �′ is modeled by decrementing
κ[�] and incrementing κ[�′]. When δ processes perform the same step one after the other, we
allow the processes to do the accelerated step that instantaneously changes the two affected
counters by δ. The number δ is called acceleration factor, which can vary in a single run.

Aswe focus on threshold-based FTDAs,we consider counter systems defined by threshold
automata. Here, transitions are guarded by threshold guards that compare a shared integer
variable to a linear combination of parameters, e.g., x ≥ n − t or x < t , where x is a shared
variable and n and t are parameters.

Completeness of the method [41] with respect to reachability is shown by proving a bound
on the diameter of the accelerated system. Inspired by Lamport’s view of distributed compu-
tation as partial order on events [43], our method uses a reduction similar to Lipton’s [48].
Instead of pruning executions that are “similar” to ones explored before as in partial order
reduction [28,53,59], we use the partial order to show (offline) that every run has a similar
run of bounded length. Interestingly, the bound is independent of the parameters. In [41],
we introduced the following automated method, which combines this idea with data abstrac-
tion [33]:

123

113

272 Form Methods Syst Des (2017) 51:270–307

Input: a CFA,
an LTL property

Data
abstraction

Counter
representation

Counter
abstraction

Finite-state
model checking
NuSMV (BDD),

NuSMV (BMC)

Property holds

Abstraction
refinement

A counterexample
(possibly spurious)

Tool chain in [33,28,41]
(counter abstraction)

Input:
a CFA,
an LTL
formula

(safety only)

Data abstraction
(threshold automata)

Counter
representation

Complete
bounded

model checking
with SMT

(infinite-state)

Property holds, or
a counterexample

Tool chain described in this paper
(SMT-based bounded model checking)

Fig. 1 Tool chain with counter abstraction [27,33,41] on top, and with SMT-based bounded model checking
on bottom

1. Apply a parametric data abstraction to the process code to get a finite state process
description, and construct the threshold automaton (TA) [33,36].

2. Compute the diameter bound, based on the control flow of the TA.
3. Construct a system with abstract counters, i.e., a counter abstraction [33,55].
4. Perform SAT-based bounded model checking [6,16] up to the diameter bound, to check

whether bad states are reached in the counter abstraction.
5. If a counterexample is found, check its feasibility and refine, if needed [13,33].

Figure 1 gives on top a diagram [40] that shows the technique based on counter abstrac-
tion. While this allowed us to automatically verify several FTDAs not verified before, there
remained two bottlenecks for scalability to larger and more complex protocols: First, counter
abstraction can lead to spurious counterexamples. As counters range over a finite abstract
domain, the semantics of abstract increment and decrements on the counters introduce non-
determinism. For instance, the value of a counter can remain unchanged after applying an
increment. Intuitively, processes or messages can be “added” or “lost”, which results in
that, e.g., in the abstract model the number of messages sent is smaller than the number of
processes that have sent a message, which obviously is spurious behavior. Second, counter
abstraction works well in practice only for processes with a few dozens of local states. It has
been observed in [4] that counter abstraction does not scale to hundreds of local states. We
had similar experience with counter abstraction in our experiments in [41]. We conjecture
that this is partly due to the many different interleavings, which result in a large search space.

To address these bottlenecks, we make two crucial contributions in this paper:

1. To eliminate one of the two sources of spurious counterexamples, namely, the non-
determinism added by abstract counters, we do bounded model checking using SMT
solvers with linear integer arithmetic on the accelerated system, instead of SAT-based
bounded model checking on the counter abstraction.

123

114

Form Methods Syst Des (2017) 51:270–307 273

Fig. 2 An example threshold
automaton with threshold guards
“ϕ1 : x ≥ �(n + t)/2� − f ”,
“ϕ2 : y ≥ (t + 1) − f ”, and
“ϕ3 : y ≥ (2t + 1) − f ”

1

2

3 4 5

r3 : ϕ1 → x++

r2 : ϕ2 → x++

r1 : true → x++

r4 : ϕ1 → y++

r5 : ϕ2 → y++

r6 : ϕ3

2. We reduce the search space dramatically: we introduce the notion of an execution schema
that is defined as a sequence of local rules of the TA. By assigning to each rule of a
schema an acceleration factor (possibly 0, which models that no process executes the
rule), one obtains a run of the counter system. Hence, due to parameterization, each
schema represents infinitely many runs. We show how to construct a set of schemas
whose set of reachable states coincides with the set of reachable states of the accelerated
counter system.

The resulting method is depicted at the bottom of Fig. 1. Our construction can be seen
as an aggressive form of reduction, where each run has a similar run generated by a schema
from the set. To show this, we capture the guards that are locked and unlocked in a context.
Our key insight is that a bounded number of transitions changes the context in each run. For
example, of all transitions increasing a variable x , at most one makes x ≥ n − t true, and
at most one makes x < t + 1 false (the parameters n and t are fixed in a run, and shared
variables can only be increased). We fix those transitions that change the context, and apply
the ideas of reduction to the subexecutions between these transitions.

Our experiments show that SMT solvers and schemas outperform SAT solvers and counter
abstraction in parameterized verification of threshold-based FTDAs. We verified safety of
FTDAs [10,18,29,51,56,57] that have not been automatically verified before. In addition
we achieved dramatic speedup and reduced memory footprint for FTDAs [9,12,58] which
previously were verified in [41].

In this article we focus on parameterized reachability properties. Recently, we extended
this approach to safety and liveness, for which we used the reachability technique of this
article as a black box [37].

2 Our approach at a glance

Formodeling threshold-based FTDAs,we use threshold automata thatwere introduced in [38,
41] and are discussed in more detail in [40]. We use Fig. 2 to describe our contributions in
this section. The figure presents a threshold automaton TA over two shared variables x and
y and parameters n, t , and f , which is inspired by the distributed asynchronous broadcast
protocol from [9]. There, n− f correct processes concurrently follow the control flow of TA,
and f processes are Byzantine faulty. As is typical for FTDAs, the parameters must satisfy
a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0, that is, less than a third of the processes are
faulty. The circles depict the local states �1, . . . , �5, two of them are the initial states �1 and
�2. The edges depict the rules r1, . . . , r6 labeled with guarded commands ϕ �→ act, where ϕ

is one of the threshold guards “ϕ1 : x ≥ �(n + t)/2� − f ”, “ϕ2 : y ≥ (t + 1) − f ”, and
“ϕ3 : y ≥ (2t + 1) − f ”, and an action act increases the shared variables (x and y) by one,
or zero (as in rule r6).

123

115

274 Form Methods Syst Des (2017) 51:270–307

We associate with every local state �i a non-negative counter κ[�i] that represents the
number of processes in �i . Together with the values of x , y, n, t , and f , the values of the
counters constitute a configuration of the system. In the initial configuration there are n − f
processes in initial states, i.e., κ[�1] + κ[�2] = n − f , and the other counters and the shared
variables x and y are zero.

The rules define the transitions of the counter system. For example, according to the
rule r2, if in the current configuration the guard y ≥ t +1− f holds true and κ[�1] ≥ 5, then
five processes can instantaneously move out of the local state �1 to the local state �3, and
increment x as prescribed by the action of r2 (since the evaluation of the guard y ≥ t +1− f
cannot change from true to false). This results in increasing x and κ[�3] byfive, and decreasing
the counter κ[�1] by five. When, as in our example, rule r2 is conceptually executed by 5
processes, we denote this transition by (r2, 5), where 5 is the acceleration factor. A sequence
of transitions forms a schedule, e.g., (r1, 2), (r3, 1), (r1, 1).

In this paper, we address a parameterized reachability problem, e.g., can at least one correct
process reach the local state �5, when n − f correct processes start in the local state �1? Or,
in terms of counter systems, is a configuration with κ[�5] 	= 0 reachable from an initial
configuration with κ[�1] = n − f ∧ κ[�2] = 0? As discussed in [41], acceleration does not
affect reachability, and precise treatment of the resilience condition and threshold guards is
crucial for solving this problem.

2.1 Schemas

When applied to a configuration, a schedule generates a path, that is, an alternating sequence
of configurations and transitions. As initially x and y are zero, threshold guards ϕ1, ϕ2, and
ϕ3 evaluate to false. As rules may increase variables, these guards may eventually become
true. In our example we do not consider guards like x < t + 1 that are initially true and
become false, although we formally treat them in our technique. In fact, initially only r1 is
unlocked. Because r1 increases x , it may unlock ϕ1. Thus r4 becomes unlocked. Rule r4
increases y and thus repeated application of r4 (by different processes) first unlocks ϕ2 and
then ϕ3. We introduce a notion of a context that is the set of threshold guards that evaluate to
true in a configuration. For our example we observe that each path goes through the following
sequence of contexts {}, {ϕ1}, {ϕ1, ϕ2}, and {ϕ1, ϕ2, ϕ3}. In fact, the sequence of contexts in
a path is always monotonic, as the shared variables can only be increased.

The conjunction of the guards in the context {ϕ1, ϕ2} implies the guards of the rules
r1, r2, r3, r4, r5; we call these rules unlocked in the context. This motivates our definition of
a schema: a sequence of contexts and rules. We give an example of a schema below, where
inside the curly brackets we give the contexts, and fixed sequences of rules in between. (We
discuss the underlined rules below.)

S = {} r1, r1 {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}
r1, r2, r3, r4, r5, r4, r5 {ϕ1, ϕ2, ϕ3} r1, r2, r3, r4, r5, r6 {ϕ1, ϕ2, ϕ3} (2.1)

Given a schema, we can generate a schedule by attaching to each rule an acceleration
factor, which can possibly be 0. For instance, if we attach non-zero factors to the underlined
rules in S, and a zero factor to the other rules, we generate the following schedule τ ′ (we
omit the transitions with 0 factors here).

τ ′ = (r1, 1)

τ ′
1

, (r1, 1)
︸ ︷︷ ︸

t1

, (r1, 1), (r3, 1)

τ ′
2

, (r4, 1)
︸ ︷︷ ︸

t2

,

τ ′
3

(r5, 1)
︸ ︷︷ ︸

t3

, (r5, 2), (r6, 4)

τ ′
4

(2.2)

123

116

Form Methods Syst Des (2017) 51:270–307 275

It can easily be checked that τ ′ is generated by schema S, because the sequence of the
underlined rules in S matches the sequence of rules appearing in τ ′.

In this paper, we show that the schedules generated by a few schemas—one per each
monotonic sequence of contexts—span the set of all reachable configurations. To this end,
we apply reduction and acceleration to relate arbitrary schedules to their representatives,
which are generated by schemas.

2.2 Reduction and acceleration

In this section we show what we mean by a schedule being “related” to its representative.
Consider, e.g., the following schedule τ from the initial state σ0 with n = 5, t = f = 1,
κ[�1] = 1, and κ[�2] = 3:

τ = (r1, 1),
τ1

(r1, 1)
︸ ︷︷ ︸

t1

, (r3, 1), (r1, 1)
τ2

, (r4, 1)
︸ ︷︷ ︸

t2

,

τ3

(r5, 1)
︸ ︷︷ ︸

t3

,

(r6, 1), (r5, 1), (r5, 1), (r6, 1), (r6, 1), (r6, 1)
τ4

Observe that after (r1, 1), (r1, 1), variable x = 2, and thus ϕ1 is true. Hence transition t1
changes the context from {} to {ϕ1}. Similarly t2 and t3 change the context. Context changing
transitions aremarkedwith curly brackets.Between themwehave the subschedules τ1, . . . , τ4
(τ3 is empty) marked with square brackets.

To show that this schedule is captured by the schema (2.1), we apply partial order argu-
ments—that is, amover analysis [48]—regarding distributed computations:As the guardsϕ2

and ϕ3 evaluate to true in τ4, and r5 precedes r6 in the control flow of the TA, all transi-
tions (r5, 1) can be moved to the left in τ4. Similarly, (r1, 1) can be moved to the left in τ2.
The resulting schedule is applicable and leads to the same configuration as the original one.
Further, we can accelerate the adjacent transitions with the same rule, e.g., the sequence
(r5, 1), (r5, 1) can be transformed into (r5, 2). Thus, we transform subschedules τi into τ ′

i ,
and arrive at the schedule τ ′ fromEq. (2.2), whichwe call the representative schedule of τ . As
the representative schedule τ ′ is generated from the schema in (2.1), we say that the schema
captures schedule τ . (It also captures τ ′.) Importantly for reachability checking, if τ and τ ′
are applied to the same configuration, they end in the same configuration. These arguments
are formalized in Sects. 5, 6 and 7.

2.3 Encoding a schema in SMT

One of the key insights in this paper is that reachability checking via schemas can be encoded
efficiently as SMT queries in linear integer arithmetic. In more detail, finite paths of counter
systems can be expressed with inequalities over counters such as κ[�2] and κ[�3], shared
variables such as x and y, parameters such as n, t , and f , and acceleration factors. Also,
threshold guards and resilience conditions are expressions in linear integer arithmetic.

We give an example of reachability checking with SMT using the simple schema
{} r1, r1 {ϕ1} which is contained in the schema S in Eq. (2.1). To obtain a complete encoding
for S, one can similarly encode the other simple schemas and combine them.

To this end, we have to express constraints on three configurations σ0, σ1, and σ2. For the
initial configuration σ0, we introduce integer variables: κ0

1, . . . , κ
0
5 for local state counters,

x0 and y0 for shared variables, and n, t , and f for parameters. As is written in Eq. (2.3), the
configuration σ0 should satisfy the initial constraints, and its context should be empty (that
is, all guards evaluate to false):

123

117

276 Form Methods Syst Des (2017) 51:270–307

κ0
1 + κ0

2 = n − f ∧ κ0
3 = κ0

4 = κ0
5 = 0 ∧ x0 = y0 = 0

∧n ≥ 3t ∧ t ≥ f ≥ 0 ∧ (¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)[x0/x, y0/y] (2.3)

The configuration σ1 is reached from σ0 by applying a transition with the rule r1 and an
acceleration factor δ1, and the configuration σ2 is reached from σ1 by applying a transition
with the rule r1 and an acceleration factor δ2. Applying transition with the rule r1 to σ0 just
means to increase both κ[�3] and x by δ1 and decrease κ[�2] by δ1. Hence, we introduce four
fresh variables per transition and add the arithmetic operations. According to the schema,
configuration σ2 has the context {ϕ2}. The following equations express these constraints1:

κ1
3 = κ0

3 + δ1 ∧ κ1
2 = κ0

2 − δ1 ∧ x1 = x0 + δ1 (2.4)

κ2
3 = κ1

3 + δ2 ∧ κ2
2 = κ1

2 − δ2 ∧ x2 = x1 + δ2

∧(ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)[x2/x, y0/y] (2.5)

Finally, we express the reachability question for all paths generated by the simple schema
{} r1, r1 {ϕ1}. Whether there is a configuration with κ[�5] 	= 0 reachable from an initial
configuration with κ[�1] = n − f and κ[�2] = 0 can then be encoded as:

κ0
1 = n − f ∧ κ0

2 = 0 ∧ κ0
5 	= 0 (2.6)

Note that we check only κ0
5 against zero, as the local state �5 is never updated by the

rule r1. It is easy to see that conjunction of Eqs. (2.3)–(2.6) does not have a solution, and thus
all paths generated by the schema {} r1, r1 {ϕ1} do not reach a configuration with κ[�5] 	= 0.
By writing down constraints for the other three simple schemas in Eq. (2.1), we can check
reachability for the paths generated by the whole schema as well. As discussed in Sect. 2.1,
our results also imply reachability on all paths whose representatives are generated by the
schema. More details on the SMT encoding can be found in Sect. 9.

3 Parameterized counter systems

We recall the framework of [41] to the extent necessary, and extend it with the notion of a
context in Sect. 3.2. A threshold automaton describes a process in a concurrent system, and
is a tuple TA = (L, I, Γ,	, R,RC) defined below.

The finite setL contains the local states, and I ⊆ L is the set of initial states. The finite set
Γ contains the shared variables that range over the natural numbers N0. The finite set 	 is a
set of parameter variables that range over N0, and the resilience condition RC is a formula
over parameter variables in linear integer arithmetic, e.g., n > 3t . The set of admissible
parameters is PRC = {p ∈ N|	|

0 : p |� RC}.
A key ingredient of threshold automata are threshold guards (or, just guards):

Definition 3.1 A threshold guard is an inequality of one of the following two forms:

(R) x ≥ a0 + a1 · p1 + · · · + a|	| · p|	|, or
(F) x < a0 + a1 · p1 + · · · + a|	| · p|	|,
where x ∈ Γ is a shared variable, a0, . . . , a|	| ∈ Z are integer coefficients, and
p1, . . . , p|	| ∈ 	 are parameters. We denote the set of all guards of the form (R) by Φrise,
and the set of all guards of the form (F) by Φfall.

1 Our model requires all variables to be non-negative integers. Although these constraints (e.g., x1 ≥ 0) have
to be encoded in the SMT queries, we omit these constraints here for a more concise presentation.

123

118

Form Methods Syst Des (2017) 51:270–307 277

A rule defines a conditional transition between local states that may update the shared
variables. Formally, a rule is a tuple (from, to, ϕrise, ϕfall, u): the local states from and to are
from L. (Intuitively, they capture from which local state to which a process moves.) A rule is
only executed if the conditions ϕrise and ϕfall evaluate to true. Condition ϕrise is a conjunction
of guards from Φrise, and ϕfall is a conjunction of guards from Φfall (cf. Definition 3.1). We
denote the set of guards used in ϕrise by guard(ϕrise), and guard(ϕfall) is the set of guards
used in ϕfall.

Rules may increase shared variables using an update vector u ∈ N|Γ |
0 that is added to

the vector of shared variables. As u ∈ N|Γ |
0 , global variables can only be increased or left

unchanged. As will be later formalized in Proposition 3.1, guards fromΦrise can only change
from false to true (rise), and guards from Φfall can change from true to false (fall). Finally, R
is the finite set of rules. We use the dot notation to refer to components of rules, e.g., r.from
or r.u.

Example 3.1 In Fig. 2, the rule r2 : ϕ2 �→ x++ that describes a transition from �1 to �3, can
formally be written as (�1, �3, ϕ2,, (1, 0)). Its intuitive meaning is as follows. If the guard
ϕ2 : y ≥ (t + 1)− f evaluates to true, a process can move from the local state �1 to the local
state �3, and the global variable x is incremented, while y remains unchanged. We formalize
the semantics as counter systems in Sect. 3.1.

Definition 3.2 Given a threshold automaton (L, I, Γ,	, R,RC), we define the precedence
relation ≺P: for a pair of rules r1, r2 ∈ R, it holds that r1 ≺P r2 if and only if r1.to =
r2.from. We denote by ≺+

P the transitive closure of ≺P. Further, we say that r1 ∼P r2, if
r1 ≺+

P r2 ∧ r2 ≺+
P r1, or r1 = r2.

Assumption 3.3 We limit ourselves to threshold automata relevant for FTDAs, i.e., those
where r.u = 0 for all rules r ∈ R that satisfy r ≺+

P r . Such automata were called canonical
in [41].

Remark 3.1 We use threshold automata to model fault-tolerant distributed algorithms that
count messages from distinct senders. These algorithms are based on an “idealistic” reliable
communication assumption (nomessage loss); these assumptions are typically expected to be
ensured by “lower level bookkeeping code”, e.g., communication protocols. As a result, the
algorithms we consider here do not gain from sending the same message (that is, increasing
a variable) inside a loop, so that we can focus on threshold automata that do not increase
shared variables in loops.

Example 3.2 In the threshold automaton from Fig. 3 we have that r2 ≺P r3 ≺P r4 ≺P r5 ≺P

r6 ≺P r8 ≺P r2. Thus, we have that r2 ≺+
P r2. In our case this implies that r2.u = 0 by

definition. Similarly we can conclude that r3.u = r4.u = r5.u = r6.u = r7.u = r8.u = 0.

Looplets The relation ∼P defines equivalence classes of rules. An equivalence class corre-
sponds to a loop or to a single rule that is not part of a loop. Hence, we use the term looplet
for one such equivalence class. For a given set of rules R let R/∼ be the set of equivalence
classes defined by ∼P. We denote by [r] the equivalence class of rule r . For two classes c1
and c2 fromR/∼we write c1 ≺C c2 iff there are two rules r1 and r2 inR satisfying [r1] = c1
and [r2] = c2 and r1 ≺+

P r2 and r1 �P r2. As the relation ≺C is a strict partial order, there
are linear extensions of ≺C . Below, we fix an arbitrary of these linear extensions to sort
transitions in a schedule: We denote by ≺lin

C a linear extension of ≺C .

123

119

278 Form Methods Syst Des (2017) 51:270–307

1 2

3

4

5

6 7
8

9

r1
r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

Fig. 3 A threshold automaton TA with local states L = {�i : 1 ≤ i ≤ 9} and rules R = {ri : 1 ≤ i ≤ 11}.
The rules drawn with solid arrows {r2, . . . , r8} constitute a single equivalence class, while all other rules are
singleton equivalence classes

1

1

2

2

no crash detected

a crash detected

Fig. 4 A typical structure found in threshold automata that model fault-tolerant algorithms with a failure
detector [12]. The gray circles depict those local states, where the failure detector reports a crash. The local
states �i and �′

i differ only in the output of the failure detector. As the failure detector output changes non-
deterministically, the threshold automaton contains loops of size two

Example 3.3 Consider Fig. 3. The threshold automaton has five looplets: c1 = {r1}, c2 =
{r2, . . . , r8}, c3 = {r9}, c4 = {r10}, and c5 = {r11}. From r9 ≺P r10, it follows that c3 ≺C c4,
and from r4 ≺+

P r10, it follows that c2 ≺C c4. We can pick two linear extensions of ≺C ,
denoted by ≺1 and ≺2. We have c1 ≺1 · · · ≺1 c5, and c1 ≺2 c2 ≺2 c3 ≺2 c5 ≺2 c4. In this
paper we always fix one linear extension.

Remark 3.2 It may seem natural to collapse such loops into singleton local states. In our case
studies, e.g, [29], non-trivial loops are used to express non-deterministic choice due to failure
detectors [12], as shown in Fig. 4. Importantly, some local states inside the loops appear in
the specifications. Thus, one would have to use arguments from distributed computing to
characterize when collapsing states is sound. In this paper, we present a technique that deals
with the loops without need for additional modelling arguments.

3.1 Counter systems

Weuse a function N : PRC → N0 to capture the number of processes for each combination of
parameters. As we use SMT, we assume that N can be expressed in linear integer arithmetic.
For instance, if only correct processes are explictly modeled we typically have N (n, t, f) =
n − f , and the respective SMT expression is n − f . Given N , a threshold automaton TA,
and admissible parameter values p ∈ PRC , we define a counter system as a transition system
(Σ, I, R). It consists of the set of configurationsΣ , which contain evaluations of the counters
and variables, the set of initial configurations I , and the transition relation R:

Configurations Σ and I A configuration σ = (κ, g, p) consists of a vector of counter values
σ.κ ∈ N|L|

0 (for simplicity we use the convention that L = {1, . . . , |L|}) a vector of shared
variable values σ.g ∈ N|Γ |

0 , and a vector of parameter values σ.p = p. The set Σ is the

123

120

Form Methods Syst Des (2017) 51:270–307 279

set of all configurations. The set of initial configurations I contains the configurations that
satisfy σ.g = 0,

∑

i∈I σ.κ[i] = N (p), and
∑

i /∈I σ.κ[i] = 0. This means that in every
initial configuration all global variables have zero values, and all N (p) modeled processes
are located only in the initial local states.

Example 3.4 Consider the threshold automaton from Fig. 2 with the initial states �1 and �2.
Let us consider a system of five processes, one of them being Byzantine faulty. Thus, n = 5,
t = f = 1, and we explicitely model N (5, 1, 1) = n − f = 4 correct processes. One of the
initial configurations is σ = (κ, g, p), where σ.κ = (1, 3, 0, 0, 0), σ.g = (0, 0), and σ.p =
(5, 1, 1). In other words, there is one process in �1, three processes in �2, and global variables
are initially x = y = 0. Note that

∑

i∈I σ.κ[i] = κ[�1] + κ[�2] = 1 + 3 = 4 = N (5, 1, 1).

Transition relation R A transition is a pair t = (rule, factor) of a rule of the TA and a non-
negative integer called the acceleration factor, or just factor for short. (As already discussed
in Sect. 2.1, we will use the zero factors when generating schedules from schemas.) For a
transition t = (rule, factor) we refer by t.u to rule.u, and by t.ϕfall to rule.ϕfall, etc. We say
a transition t is unlocked in configuration σ if (σ.κ, σ.g + k · t.u, σ.p) |� t.ϕrise ∧ t.ϕfall,
for k ∈ {0, . . . , t.factor − 1}. Note that here we use a notation that a configuration satisfies
a formula, which is considered true if and only if the formula becomes true when all free
variables of the formulas are evaluated as in the configuration.

We say that transition t is applicable (or enabled) in configuration σ , if it is unlocked, and
σ.κ[t.from] ≥ t.factor. (As all counters are non-negative, a transition with the zero factor is
always applicable to all configurations provided that the guards are unlocked.) We say that
σ ′ is the result of applying the enabled transition t to σ , and write σ ′ = t (σ), if

– σ ′.g = σ.g + t.factor · t.u and σ ′.p = σ.p
– if t.from 	= t.to then

– σ ′.κ[t.from] = σ.κ[t.from] − t.factor,
– σ ′.κ[t.to] = σ.κ[t.to] + t.factor, and
– ∀� ∈ L\{t.from, t.to} it holds that σ ′.κ[�] = σ.κ[�]

– if t.from = t.to then σ ′.κ = σ.κ

The transition relation R ⊆ Σ×Σ of the counter system is defined as follows: (σ, σ ′) ∈ R
iff there is a rule r ∈ R and a factor k ∈ N0 such that σ ′ = t (σ) for t = (r, k). Updates do not
decrease the values of shared variables, and thus the following proposition was introduced
in [41]:

Proposition 3.1 [41] For all configurations σ , all rules r , and all transitions t applicable to
σ , the following holds:

1. If σ |� r.ϕrise then t (σ) |� r.ϕrise 3. If σ 	|� r.ϕfall then t (σ) 	|� r.ϕfall

2. If t (σ) 	|� r.ϕrise then σ 	|� r.ϕrise 4. If t (σ) |� r.ϕfall then σ |� r.ϕfall

Schedules and paths A schedule is a (finite) sequence of transitions. For a schedule τ and
an index i : 1 ≤ i ≤ |τ |, by τ [i] we denote the i th transition of τ , and by τ i we denote the
prefix τ [1], . . . , τ [i] of τ . A schedule τ = t1, . . . , tm is applicable to configuration σ0, if
there is a sequence of configurations σ1, . . . , σm with σi = ti (σi−1) for 1 ≤ i ≤ m. If there
is a ti .factor > 1, then a schedule is accelerated.

By τ · τ ′ we denote the concatenation of two schedules τ and τ ′. A sequence
σ0, t1, σ1, . . . , σk−1, tk, σk of alternating configurations and transitions is called a (finite)

123

121

280 Form Methods Syst Des (2017) 51:270–307

path, if transition ti is enabled in σi−1 and σi = ti (σi−1), for 1 ≤ i ≤ k. For a configuration σ0
and a schedule τ applicable to σ0, by path(σ0, τ)we denote the path σ0, t1, . . . , t|τ |, σ|τ | with
ti = τ [i] and σi = ti (σi−1), for 1 ≤ i ≤ |τ |.
3.2 Contexts and slices

The evaluation of the guards in the sets Φrise and Φfall in a configuration solely defines
whether certain transitions are unlocked (but not necessarily enabled). From Proposition 3.1,
one can see that after a transition has been applied, more guards fromΦrise may get unlocked
and more guards from Φfall may get locked. In other words, more guards from Φrise may
evaluate to true and more guards from Φfall may evaluate to false. To capture this intuition,
we define:

Definition 3.4 A context Ω is a pair (Ω rise,Ω fall) with Ω rise ⊆ Φrise and Ω fall ⊆ Φfall. We
denote by |Ω| = |Ω rise| + |Ω fall|.

For two contexts (Ω rise
1 ,Ω fall

1) and (Ω rise
2 ,Ω fall

2), we define that (Ω rise
1 ,Ω fall

1) �
(Ω rise

2 ,Ω fall
2) if and only if Ω rise

1 ∪ Ω fall
1 ⊂ Ω rise

2 ∪ Ω fall
2 . Then, a sequence of contexts

Ω1, . . . ,Ωm is monotonically increasing, if Ωi � Ωi+1, for 1 ≤ i < m. Further, a
monotonically increasing sequence of contexts Ω1, . . . , Ωm is maximal, if Ω1 = (∅,∅)

and Ωm = (Φrise, Φfall) and |Ωi+1| = |Ωi | + 1, for 1 ≤ i < m. We obtain:

Proposition 3.2 Every maximal monotonically increasing sequence of contexts is of length
|Φrise| + |Φfall| + 1. There are at most (|Φrise| + |Φfall|)! such sequences.

Example 3.5 For the example in Fig. 2, we have Φrise = {ϕ1, ϕ2, ϕ3}, and Φfall = ∅.
Thus, there are (|Φrise| + |Φfall|)! = 6 maximal monotonically increasing sequences
of contexts. Two of them are (∅,∅) � ({ϕ1},∅) � ({ϕ1, ϕ2},∅) � ({ϕ1, ϕ2, ϕ3},∅)

and (∅,∅) � ({ϕ3},∅) � ({ϕ1, ϕ3},∅) � ({ϕ1, ϕ2, ϕ3},∅). All of them have length
|Φrise| + |Φfall| + 1 = 4.

To every configuration σ , we attach the context consisting of all guards in Φrise that
evaluate to true in σ , and all guards in Φfall that evaluate to false in σ :

Definition 3.5 Given a threshold automaton,we define its configuration context as a function
ω : Σ → 2Φrise × 2Φfall

that for each configuration σ ∈ Σ gives a context (Ω rise,Ω fall) with
Ω rise = {ϕ ∈ Φrise : σ |� ϕ} and Ω fall = {ϕ ∈ Φfall : σ 	|� ϕ}.

The following monotonicity result is a direct consequence of Proposition 3.1.

Proposition 3.3 If a transition t is enabled in a configurationσ , then eitherω(σ) � ω(t (σ)),
or ω(σ) = ω(t (σ)).

Definition 3.6 A schedule τ is steady for a configuration σ , if for every prefix τ ′ of τ , the
context does not change, i.e., ω(τ ′(σ)) = ω(σ).

Proposition 3.4 A schedule τ is steady for a configuration σ if and only ifω(σ) = ω(τ(σ)).

In the following definition, we associate a sequence of contexts with a path:

Definition 3.7 Given a configuration σ and a schedule τ applicable to σ , we say that
path(σ, τ) is consistent with a sequence of contexts Ω1, . . . , Ωm , if there exist indices
n0, . . . , nm , with 0 = n0 ≤ n1 ≤ . . . ≤ nm = |τ | + 1, such that for every k, 1 ≤ k ≤ m, and
every i with nk−1 ≤ i < nk , it holds that ω(τ i (σ)) = Ωk .

123

122

Form Methods Syst Des (2017) 51:270–307 281

Fig. 5 The slice of the TA in
Fig. 2 that is constructed for the
context ({ϕ2}, ∅)

1

2

3 4 5

r2 : ϕ2 → x++

r1 : true → x++

r5 : ϕ2 → y++

Every path is consistent with a uniquely defined maximal monotonically increasing
sequence of contexts. (Some of the indices n0, . . . , nm in Definition 3.7 may be equal.)
In Sect. 4, we use such sequences of contexts to construct a schema recognizing many paths
that are consistent with the same sequence of contexts.

A context defines which rules of the TA are unlocked. A schedule that is steady for a
configuration visits only one context, and thus we can statically remove TA’s rules that are
locked in the context:

Definition 3.8 Given a threshold automaton TA = (L, I, Γ,	, R,RC) and a context Ω ,
we define the slice of TA with context Ω = (Ω rise,Ω fall) as a threshold automaton TA|Ω =
(L, I, Γ,	, R|Ω,RC), where a rule r ∈ R belongs to R|Ω if and only if

(∧

ϕ∈Ω rise ϕ
) →

r.ϕrise and
(∧

ψ∈Φfall\Ω fall ψ
) → r.ϕfall.

In otherwords,R|Ω contains those andonly those rules r withguards that evaluate to true in
all configurations σ withω(σ) = Ω . These are exactly the guards fromΩ rise∪(Φfall\Ω fall).
When ω(σ) = Ω , then all guards from Ω rise evaluate to true, and then r.ϕrise must also be
true. AsΩ fall contains those guards fromΦfall that evaluate to false in σ , then all other guards
fromΦfall must evaluate to true, and then r.ϕfall must be true too. Figure 5 shows an example
of a slice.

3.3 Model checking problem: parameterized reachability

Given a threshold automaton TA, a state property B is a Boolean combination of formulas
that have the form

∧

i∈Y κ[i] = 0, for some Y ⊆ L. The parameterized reachability problem
is to decide whether there are parameter values p ∈ PRC , an initial configuration σ0 ∈ I ,
with σ0.p = p, and a schedule τ , such that τ is applicable to σ0, and property B holds in the
final state: τ(σ0) |� B.

4 Main result: a complete set of schemas

To address parameterized reachability, we introduce schemas, i.e., alternating sequences of
contexts and rule sequences. A schema serves as a pattern for a set of paths, and is used to
efficiently encode parameterized reachability in SMT. As parameters give rise to infinitely
many initial states, a schema captures an infinite set of paths.We showhow to construct a finite
set of schemas S with the following property: for each schedule τ and each configuration σ

there is a representative schedule s(τ) such that: (1) applying s(τ) to σ results in τ(σ), and
(2) path(σ, s(τ)) is generated by a schema from S.

Definition 4.1 A schema is a sequence Ω0, ρ1,Ω1, . . . , ρm,Ωm of alternating contexts and
rule sequences. We often write {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm} for a schema. A schema
with two contexts is called simple.

123

123

282 Form Methods Syst Des (2017) 51:270–307

Given two schemas S1 = Ω0, ρ1, . . . , ρk,Ωk and S2 = Ω ′
0, ρ

′
1, . . . , ρ

′
m,Ω ′

m with Ωk =
Ω ′

0, we define their composition S1 ◦ S2 to be the schema that is obtained by concatenation
of the two sequences: Ω0, ρ1, . . . , ρk,Ω

′
0, ρ

′
1, . . . , ρ

′
m,Ω ′

m .

Definition 4.2 Given a configuration σ and a schedule τ applicable to σ , we say that
path(σ, τ) is generated by a simple schema {Ω} ρ {Ω ′}, if the following hold:

– Forρ = r1, . . . , rk there is amonotonically increasing sequenceof indices i(1), . . . , i(m),
i.e., 1 ≤ i(1) < · · · < i(m) ≤ k, and there are factors f1, . . . , fm ≥ 0, so that schedule
(ri(1), f1), . . . , (ri(m), fm) = τ .

– The first and the last states match the contexts: ω(σ) = Ω and ω(τ(σ)) = Ω ′.
In general, we say that path(σ, τ) is generated by a schema S, if S = S1 ◦ · · · ◦ Sk for

simple schemas S1, . . . , Sk and τ = τ1 · · · τk such that each path(πi (σ), τi) is generated by
the simple schema Si , for πi = τ1 · · · τi−1 and 1 ≤ i ≤ k.

Remark 4.1 Definition 4.2 allows schemas to generate paths that have transitions with zero
acceleration factors. Applying a transition with a zero factor to a configuration σ results
in the same configuration σ , which corresponds to a stuttering step. This does not affect
reachability. In the following, we will apply Definition 4.2 to representative paths that may
have transitions with zero factors.

Example 4.1 Let us go back to the example of a schema S and a schedule τ ′ introduced in
Eqs. (2.1) and (2.2) in Sect. 2.1. It is easy to see that schema S can be decomposed into four
simple schemas S1 ◦ · · · ◦ S4, e.g., S1 = {} r1, r1 {ϕ1} and S2 = {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}.
Consider an initial state σ0 with n = 5, t = f = 1, x = y = 0, κ[�1] = 1, κ[�2] = 3, and
κ[�i] = 0 for i ∈ {3, 4, 5}. To ensure that path(σ0, τ

′) is generated by schema S, one has to
check Definition 4.2 for schemas S1, . . . , S4 and schedules (τ ′

1 · t1), (τ ′
2 · t2), (τ ′

3 · t3), and τ ′
4,

respectively. For instance, path(σ0, τ
′
1 · t1) is generated by S1. Indeed, take the sequence of

indices 1 and 2 and the sequence of acceleration factors 1 and 1. The path path(σ0, τ
′
1 · t1)

ends in the configuration σ1 that differs from σ0 in that κ[�2] = 1, κ[�3] = 2, and x = 2.
The contexts ω(σ0) = ({}, {}) and ω(σ1) = ({ϕ1}, {}) match the contexts of schema S1, as
required by Definition 4.2.

Similarly, path(σ1, τ
′
2 · t2) is generated by schema S2. To see that, compare the contexts

and use the index sequence 1, 2, 4, and acceleration factors 1.

The language of a schema S—denoted with L(S)—is the set of all paths generated by S.
For a set of configurations C ⊆ Σ and a set of schemas S, we define the set Reach(C, S) to
contain all configurations reachable from C via the paths generated by the schemas from S,
i.e., Reach(C, S) = {τ(σ) | σ ∈ C, ∃S ∈ S. path(σ, τ) ∈ L(S)}. We say that a set
S of schemas is complete, if for every set of configurations C ⊆ Σ it is the case that
the set of all states reachable from C via the paths generated by the schemas from S, is
exactly the set of all possible states reachable from C . Formally, ∀C ⊆ Σ. {τ(σ) | σ ∈
C, τ is applicable to σ } = Reach(C, S).

In [41], a quantity C has been introduced that depends on the number of conditions in
a TA. It has been shown that for every configuration σ and every schedule τ applicable to σ ,
there is a schedule τ ′ of length at most d = |R| · (C + 1) + C that is also applicable to σ and
results in τ(σ) [41, Thm. 8]. Hence, by enumerating all sequences of rules of length up to d ,
one can construct a complete set of schemas:

Theorem 4.1 For a threshold automaton, there is a complete schema set Sd of cardinality
|R||R|·(C+1)+C .

123

124

Form Methods Syst Des (2017) 51:270–307 283

Although the set Sd is finite, enumerating all its elements is impractical. We show that
there is a complete set of schemas whose cardinality solely depends on the number of guards
that syntactically occur in the TA. These numbers |Φrise| and |Φfall| are in practice much
smaller than the number of rules |R|:
Theorem 4.2 For all threshold automata, there exists a complete schema set of cardinality
at most (|Φrise| + |Φfall|)!. In this set, the length of each schema does not exceed (3 · |Φrise ∪
Φfall| + 2) · |R|.

In the following sections we prove the ingredients of the following argument for the the-
orem: construct the set Z of all maximal monotonically increasing sequences of contexts.
From Proposition 3.2, we know that there are at most (|Φrise| + |Φfall|)! maximal monoton-
ically increasing sequences of contexts. Therefore, |Z | ≤ (|Φrise| + |Φfall|)!. Then, for each
sequence z ∈ Z , we do the following:

(1) We show that for each configuration σ and each schedule τ applicable to σ and consistent
with the sequence z, there is a schedule s(τ) that has a specific structure, and is also
applicable to σ . We call s(τ) the representative of τ . We introduce and formally define
this specific structure of representative schedules in Sects. 5, 6 and 7.We prove existence
and properties of the representative schedule in Theorem 7.1 (Sect. 7). Before that
we consider special cases: when all rules of a schedule belong to the same looplet
(Theorem 5.1, Sect. 5), and when a schedule is steady (Theorem 6.1, Sect. 6).

(2) Next we construct a schema (for the sequence z) and show that it generates all paths
of all schedules s(τ) found in (1). The length of the schema is at most (3 · (|Φrise| +
|Φfall|) + 2) · |R|. This is shown in Theorem 7.2 (Sect. 7).

Theorem 4.2 follows from the above theorems, which we prove in the following.

Remark 4.2 Let us stress the difference between [41] and this work. From [41], it follows that
in order to check correctness of a TA it is sufficient to check only the schedules of bounded
length d(TA). The bound d(TA) does not depend on the parameters, and can be computed
for each TA. The proofs in [41] demonstrate that every schedule longer than d(TA) can be
transformed into an “equivalent” representative schedule, whose length is bounded by d(TA).
Consequently, one can treat every schedule of length up to d(TA) as its own representative
schedule. Similar reasoning does not apply to the schemas constructed in this paper: (i) we
construct a complete set of schemas, whose cardinality is substantially smaller than |Sd |, and
(ii) the schemas constructed in this paper can be twice as long as the schemas in Sd .

As discussed in Remark 3.2, the looplets in our case studies are typically either singleton
looplets or looplets of size two. In fact, most of our benchmarks have singleton looplets only,
and thus their threshold automata can be reduced to directed acyclic graphs. The theoretical
constructs of Sect. 5.2 are presented for the more general case of looplets of any size. For
most of the benchmarks—the ones not using failure detectors—we need only the simple
construction laid out in Sect. 5.1.

5 Case I: one context and one looplet

We show that for each schedule that uses only the rules from a fixed looplet and does not
change its context, there exists a representative schedule of bounded length that reaches the

123

125

284 Form Methods Syst Des (2017) 51:270–307

same final state. The goal is to construct a single schema per looplet. The technical challenge
is that this single schema must generate representative schedules for all possible schedules,
where, intuitively, processes may move arbitrarily between all local states in the looplet. As
a consequence, the rules that appear in the representative schedules can differ from the rules
that appear in the arbitrary schedules visiting a looplet.

We fix a threshold automaton, a contextΩ , a configuration σ with ω(σ) = Ω , a looplet c,
and a schedule τ applicable to σ and using only rules from c. We then construct the repre-
sentative schedule crepΩ

c [σ, τ] and the schema cschemaΩ
c .

The technical details of the construction of crepΩ
c [σ, τ] for the case when |c| = 1 is given

in Sect. 5.1, and for the case when |c| > 1 in Sect. 5.2. We show in Sect. 5.3 that these
constructions give us a schedule that has the desired properties: it reaches the same final state
as the given schedule τ , and its length does not exceed 2 · |c|.

Note that in [41], the length of the representative schedule was bounded by |c|. However,
all representative schedules of a looplet in this section can be generated by a single looplet
schema.

5.1 Singleton looplet

Let us consider the case of the looplet c containing only one transition, that is, |c| = 1. There
is a trivial representative schedule of a single transition:

Lemma 5.1 Given a threshold automaton, a configuration σ , and a schedule τ = (r, f1), …,
(r, fm) applicable to σ , one of the two schedules is also applicable to σ and results in τ(σ):
schedule (r, f1 + · · · + fm), or schedule (r, 0).

Proof We distinguish two cases:
Case r.to = r. f rom Then, r.u = 0, and τ k(σ) = σ for 0 ≤ k ≤ |τ |. Consequently, the

schedule (r, 0) is applicable to σ , and it results in τ(σ) = σ .
Case r.to 	= r. f rom We prove by induction on the length k : 1 ≤ k ≤ m of a prefix of τ ,

that the following constraints hold for all k:

(τ k(σ)).κ[r.from] = σ.κ[r.from] − (f1 + · · · + fk) (5.1)

(τ k(σ)).g = σ.g + (f1 + · · · + fk) · r.u (5.2)

(σ.κ, σ.g + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise for all f ∈ {0, . . . , f1 + · · · + fk} (5.3)

Base case k = 1. As schedule τ is applicable to σ , its first transition is enabled in σ . Thus,
by the definition of an enabled transition, the rule r is unlocked, i.e., for all f ∈ {0, . . . , f1},
it holds (σ.κ, σ.g + f1 · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise. By the definition, once the transition
τ [1] is applied, it holds that τ 1(σ).κ[from] = σ.κ[from]− f1 and (τ k(σ)).g = σ.g+ f1 ·r.u.
Thus, Constraints (5.1)–(5.3) are satisfied for k = 1.

Inductive step k > 1. As schedule τ is applicable to σ , its prefix τ k is applicable to σ .
Hence, transition τ [k] is applicable to τ k−1(σ).

By the definition of an enabled transition, for all f ∈ {0, . . . , fk}, it holds
((τ k−1(σ)).κ, ((τ k−1(σ)).g + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise.

By applying the Eq. (5.2) for k − 1 of the inductive hypothesis, we obtain that for all f ∈
{0, . . . , fk}, it holds that (σ.κ, σ.g + (f1 + · · · + fk−1 + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise. By
combining this constraint with the constraint (5.3) for k − 1, we arrive at the constraint (5.3)
for k.

123

126

Form Methods Syst Des (2017) 51:270–307 285

By applying τ [k], we get that (τ k(σ)).κ[r.from] = (τ k−1(σ)).κ[r.from] − fk and
(τ k(σ)).g = (τ k−1(σ)).g + fk · r.u. By applying (5.1) and (5.2) for k − 1 to these equations,
we arrive at the Eqs. (5.1) and (5.2) for k.

Based on (5.1) and (5.3) for all values of k, and in particular k = m, we can now show
applicability. From Eq. (5.1), we immediately obtain that σ.κ[r.from] ≥ f1 + · · · + fm .
From constraint (5.3), we obtain that (σ.κ, σ.g + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise for all f ∈
{0, . . . , f1 +· · ·+ fm}. These are the required conditions for the transition (r, f1 +· · ·+ fm)

to be applicable to the configuration σ . ��

Consequently, when c has a single rule r , for configuration σ and a schedule τ =
(r, f1), . . . , (r, fm), Lemma5.1 allows us to take the singleton schedule (r, f) as crepΩ

c [σ, τ]
and to take the singleton schema {Ω} r {Ω} as cschemaΩ

c . The factor f is either f1+. . .+ fm
or zero.

5.2 Non-singleton looplet

Next we focus on non-singleton looplets. Thus, we assume that |c| > 1. Our construction is
based on two directed trees, whose undirected versions are spanning trees, sharing the same
root. In order to find a representative of a steady schedule τ which leads from σ to τ(σ), we
determine for each local state how many processes have to move in or out of the state, and
then we move them along the edges of the trees. First, we give the definitions of such trees,
and then we show how to use them to construct the representative schedules and the schema.

Spanning out-trees and in-trees We construct the underlying graph of looplet c, that is, a
directed graph Gc, whose vertices consist of local states that appear as components from or
to of the rules from c, and the edges are the rules of c. More precisely, we construct a directed
graph Gc = (Vc, Ec, Lc), whose edges from Ec are labeled by function Lc : Ec → c with
the rules of c as follows:

Vc = {� | ∃r ∈ c, r.to = � ∨ r.from = �},
Ec = {(�, �′) | ∃r ∈ c, r.from = �, r.to = �′},

Lc((�, �
′)) = r , if r.from = �, r.to = �′ for (�, �′) ∈ Ec and r ∈ c.

Lemma 5.2 Given a threshold automaton and a non-singleton looplet c ∈ R/∼, graph Gc

is non-empty and strongly connected.

Proof As, |c| > 1 and thus Ec ≥ 2, graph Gc is non-empty. To prove that Gc is strongly
connected, we consider a pair of rules r1, r2 ∈ c. By the definition of a looplet, it holds that
r1 ≺+

P r2 and r2 ≺+
P r1. Thus, there is a path in Gc from r1.to to r2.from, and there is a path

in Gc from r2.to to r1.from. As r1 and r2 correspond to some edges in Gc, there is a cycle that
contains the vertices r1.from, r1.to, r2.from, and r2.to. Thus, graph Gc is strongly connected.

��

As Gc is non-empty and strongly connected, we can fix an arbitrary node h ∈ Vc—called
a hub—and construct two directed trees, whose undirected versions are spanning trees of the
undirected version of Gc. These are two subgraphs of Gc: a directed tree Tout = (Vc, Eout),
whose edges Eout ⊆ Ec are pointing away from h (out-tree); a directed tree Tin = (Vc, Ein),
whose edges Ein ⊆ Ec are pointing to h (in-tree). For every node v ∈ Vc\{h}, it holds that
|{u : (u, v) ∈ Eout}| = 1 and |{w : (v,w) ∈ Ein}| = 1.

123

127

286 Form Methods Syst Des (2017) 51:270–307

2

3

4

5

6

r2

r3

r4

r5

r6

r7

r8
2

3

h = 4

5

6

e
in (1)

ein(2)
e in

(3
)

ein (4)
2

3

h = 4

5

6eout
(1)

e
out (2)

e
o
u
t (3

)

eou
t(
4)

Fig. 6 The underlying graph of the looplet c2 of the threshold automaton from Example 3.3 and Fig. 3 (left),
together with trees Tin (middle) and Tout (right)

Further, we fix a topological order�in on the edges of tree Tin. More precisely,�in is such
a partial order on Ein that for each pair of adjacent edges (�, �′), (�′, �′′) ∈ Ein, it holds that
(�, �′) �in (�′, �′′). In the same way, we fix a topological order�out on the edges of tree Tout.

Example 5.1 Consider again the threshold automaton from Example 3.3 and Fig. 3. We
construct trees Tin and Tout for looplet c2, shown in Fig. 6.

Note that Vc = {�2, �3, �4, �5, �6}, and Ec = {(�2, �3), (�3, �5), (�5, �6), (�6, �4),
(�4, �4), (�4, �5), (�4, �2)}. Fix �4 as a hub. We can fix a linear order �in such that
(�2, �3) �in (�3, �5) �in (�5, �6) �in (�6, �4), and a linear order�out such that (�4, �2) �out
(�2, �3) �out (�4, �5) �out (�5, �6).

Note that for the chosen hub l4 and this specific example, Tin and�in are uniquely defined,
while an out-tree can be different from Tout from our Fig. 6 (the rules r8, r2, r3, r4 constitute
a different tree from the same hub). Because out-tree Tout is not a chain, several linear orders
different from �out can be chosen, e.g., (�4, �2) �out (�4, �5) �out (�2, �3) �out (�5, �6).
Representatives of non-singleton looplets Using these trees, we show how to construct a
representative crepΩ

c [σ, τ] of a schedule τ applicable to σ with σ ′ = τ(σ). For a configu-
ration σ and a schedule τ applicable to σ , consider the trees Tin and Tout. We construct two
sequences: the sequence ein(1), . . . , ein(|Ein|) of all edges of Tin following the order�in, i.e.,
if ein(i) �in ein(j), then i ≤ j ; the sequence eout(1), . . . , eout(|Eout|) of all edges of Tout
following the order �out. Further, we define the sequence of rules rin(1), . . . , rin(|Ein|) with
rin(i) = Lc(ein(i)) for 1 ≤ i ≤ |Ein|, and the sequence of rules rout(1), . . . , rout(|Eout|)
with rout(i) = Lc(eout(i)) for 1 ≤ i ≤ |Eout|. Using configurations σ and σ ′ = τ(σ), we
define:

δin(i) = σ.κ[f] − σ ′.κ[f], for f = rin(i).from and 1 ≤ i ≤ |Ein|,
δout(j) = σ ′.κ[t] − σ.κ[t], for t = rout(j).to and 1 ≤ j ≤ |Eout|.

If δin(i) ≥ 0, then δin(i) processes should leave the local state rin(i).from towards the hub,
and they do it exclusively using the edge ein(i). If δout(j) ≥ 0, then δout(j) processes should
reach the state rout(j).to from the hub, and they do it exclusively using the edge eout(j). The
negative values of δin(i) and δout(j) do not play any role in our construction, and thus, we
use max(δin(i), 0) and max(δout(j), 0).

The main idea of the representative construction is as follows. First, we fire the sequence
of rules rin(1), . . . , rin(k) to collect sufficiently many processes in the hub. Then, we fire the
sequence of rules rout(1), . . . , rout(k) to distribute the required number of processes from
the hub. As a result, for each location � in the graph, the processes are transferred from �

123

128

Form Methods Syst Des (2017) 51:270–307 287

σσ ::
11

22

33
44

rr11 rr22

rr33rr44

σσ ::
11

22

33
44

rr11 rr22

rr33rr44

ττ == rr44, r, r33, r, r44, r, r11, r, r22, r, r33, r, r11, r, r44, r, r11

TTinin ::

hh == 11 44 33 22eeinin(3)(3)

rrinin(3) =(3) = rr44

δδinin(3) = 1(3) = 1 −− 0 = 10 = 1
wwinin(3) = 1 + 1 + 0 = 2(3) = 1 + 1 + 0 = 2

eeinin(2)(2)

rrinin(2) =(2) = rr33

δδinin(2) = 1(2) = 1 −− 0 = 10 = 1
wwinin(2) = 1 + 0 = 1(2) = 1 + 0 = 1

eeinin(1)(1)

rrinin(1) =(1) = rr22

δδinin(1) = 0(1) = 0 −− 2 =2 = −−22
wwinin(1) = 0(1) = 0

TToutout ::

hh == 11 22 33 44eeoutout(1)(1)

rroutout(1) =(1) = rr11

δδoutout(1) = 2(1) = 2 −− 0 = 20 = 2
wwoutout(1) = 2 + 0 + 0 = 2(1) = 2 + 0 + 0 = 2

eeoutout(2)(2)

rroutout(2) =(2) = rr22

δδoutout(2) = 0(2) = 0 −− 1 =1 = −−11
wwoutout(2) = 0 + 0 = 0(2) = 0 + 0 = 0

eeoutout(3)(3)

rroutout(3) =(3) = rr33

δδoutout(3) = 0(3) = 0 −− 1 =1 = −−11
wwoutout(3) = 0(3) = 0

Fig. 7 Construction of the representative of a schedule using the rules in the four-element looplet, following
Example 5.2

to the other locations, if σ [�] > σ ′[�], and additional processes arrive at �, if σ [�] < σ ′[�].
Using δin(i) and δout(i), we define the acceleration factors for each rule as follows:

win(i) =
∑

j : ein(j)�in ein(i)

max(δin(j), 0) and

wout(i) =
∑

j : eout(i) �out eout(j)

max(δout(j), 0).

Finally, we construct the schedule crepΩ
c [σ, τ] as follows:

crepΩ
c [σ, τ] = (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)),

(rout(1), wout(1)), . . . , (rout(|Eout|), wout(|Eout|)). (5.4)

Example 5.2 Consider the TA shown in Fig. 7. Let c be the four-element looplet that
contains the rules r1, r2, r3, and r4, and τ be the schedule τ = (r4, 1), (r3, 1),
(r4, 1), (r1, 1), (r2, 1), (r3, 1), (r1, 1), (r4, 1), (r1, 1) that uses the rules of the looplet c.
Consider a configuration σ with σ.κ[�3] = σ.κ[�4] = 1, and σ.κ[�1] = σ.κ[�2] = 0.
The final configuration σ ′ = τ(σ) has the following properties: σ ′.κ[�2] = 2 and
σ ′.κ[�1] = σ ′.κ[�3] = σ ′.κ[�4] = 0. By comparing σ and σ ′, we notice that one pro-
cess should move from �3 to �2, and one from �4 to �2. We will now show how this is
achieved by our construction.

For constructing the representative schedule crepΩ
c [σ, τ], we first define trees Tin and Tout.

If we chose �1 to be the hub, we get that Ein = {(�4, �1), (�3, �4), (�2, �3)}, and thus the order
is (�2, �3) �in (�3, �4) �in (�4, �1). Therefore, we obtain ein(1) = (�2, �3), ein(2) = (�3, �4)

and ein(3) = (�4, �1). By calculating δin(i) for every i ∈ {1, 2, 3}, we see that δin(2) = 1 and
δin(3) = 1 are positive. Consequently, two processes go to the hub: one from rin(2).from = �3
and one from rin(3).from = �4. The coefficients win give us acceleration factors for all rules.

Similarly, we obtain Eout = {(�1, �2), (�2, �3), (�3, �4)}, and the order must be
(�1, �2) �out (�2, �3) �out (�3, �4). Thus, eout(1) = (�1, �2), ein(2) = (�2, �3), and

123

129

288 Form Methods Syst Des (2017) 51:270–307

eout(3) = (�3, �4). Here only δout(1) = 2 has a positive value, and hence, two processes
should move from hub to the local state rout(1).to = �2. To achieve this, the acceleration
factor of every rule rout(i), 1 ≤ i ≤ 3, must be wout(i).

Therefore, by Eq. (5.4), the representative schedule is

crepΩ
c [σ, τ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0).

Choosing another hub gives us another representative. For each hub, the representative is
not longer than 2|c| = 8, and leads to σ ′ when applied to σ .

In the following, we fix a threshold automatonTA, a contextΩ , and a non-singleton looplet
c of the slice TA|Ω . We also fix a configuration σ of TA and a schedule τ that is contained
in c and is applicable to σ . Our goal is to prove Lemma 5.8, which states that crepΩ

c [σ, τ] is
indeed applicable to σ and ends in τ(σ). To this end, we first prove auxiliary Lemmas 5.3–5.7.

Lemma 5.3 For every i : 1 ≤ i ≤ |Ein|, it holds that σ.κ[ri .from] ≥ max(δin(i), 0), where
ri = Lc(ein(i)).

Proof Recall that by the definition of a configuration, every counter σ.κ[�] is non-negative.
If δin(i) ≥ 0, then max(δin(i), 0) = δin(i) = σ.κ[ri .from] − σ ′.κ[ri .from], which is bound
from above by σ.κ[ri .from]. Otherwise, δin(i) ≤ 0, and we trivially have max(δin(i), 0) = 0
and 0 ≤ σ.κ[ri .from]. ��
Lemma 5.4 Schedule τin = (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)) is applicable to
configuration σ .

Proof We denote by αi the schedule (rin(1), win(1)), . . . , (rin(i), win(i)), for 1 ≤ i ≤ |Ein|.
Then τin = α|Ein|.

All rules rin(1), . . . , rin(|Ein|) are from R|Ω , and thus are unlocked. Hence, it is suffi-
cient to show that the values of the locations from the set Vc are large enough to enable
each transition (rin(i), win(i)) for 1 ≤ i ≤ |Ein|. To this end, we prove by induction that
(αi−1(σ)).κ[ri .from] ≥ win(i), for 1 ≤ i ≤ |Ein| and ri = Lc(ein(i)).

Base case i = 1. For r1 = Lc(ein(1)), we want to show that σ.κ[r1.from] ≥ win(1). As
ein(1) is the first element of the sequence ein(1), . . . , ein(Ein), which respects the order �in,
we conclude that win(1) = max(δin(1), 0). From Lemma 5.3, it follows that σ.κ[r1.from] ≥
max(δin(1), 0).

Inductive step k assume that for all i : 1 ≤ i ≤ k − 1 < |Ein|, schedule αi is applicable
to σ and show that (αk−1(σ)).κ[rk .from] ≥ win(k) with rk = Lc(ein(k)).

To this end, we construct the set of edges Pk that precede the edge ein(k) in the topological
order �in, that is, Pk = {e | e ∈ Ein, e �in ein(k), e 	= ein(k)}. We show that the following
equation holds:

αk−1(σ)).κ[rk .from] = σ.κ[rk .from] +
∑

ein(j)∈Pk

max(δin(j), 0). (5.5)

Indeed, if one picks an edge ein(j) ∈ Pk , the edge ein(j) adds win(j) to the
counter κ[rk .from]. As the sequence {ein(i)}i≤k is topologically sorted, it follows that j < k.
Moreover, as the tree Tin is oriented towards the root, ein(k) is the only edge leaving the local
state rk .from. Thus, no edge ein(i) with i < k decrements the counter σ.κ[rk .from].

From Eq. (5.5) and Lemma 5.3, we conclude that (αk−1(σ)).κ[rk .from] is not less than
max(δin(k), 0) + ∑

ein(j) : ein(j)�in ein(k), j 	=k max(δin(j), 0), which equals to win(k). This
proves the inductive step.

Therefore, we have shown that τin = α|Ein| is applicable to σ . ��

123

130

Form Methods Syst Des (2017) 51:270–307 289

The following lemma is easy to prove by induction on the length of a schedule. The base
case for a single transition follows from the definition of a counter system.

Lemma 5.5 Let σ and σ ′ be two configurations and τ be a schedule applicable to σ such
that τ(σ) = σ ′. Then it holds that

∑

�∈L(σ ′[�] − σ [�]) = 0.

Further, we show that the required number of processes is reaching (or leaving) the hub,
when the transitions derived from the trees Tin and Tout are executed:

Lemma 5.6 The following equality holds:

σ ′.κ[h] − σ.κ[h] =
∑

1≤i≤|Ein|
max(δin(i), 0) −

∑

1≤i≤|Eout|
max(δout(i), 0).

Proof Recall that Tin is a tree directed towards h, and the undirected version of Tin is a
spanning tree of graph C . Hence, for each local state � ∈ Vc\{h}, there is exactly one
edge e ∈ Ein with Lc(e).from = �. Thus, the following equation holds:

∑

1≤i≤|Ein|
max(δin(i), 0) =

∑

�∈Vc\{h}
max(σ.κ[�] − σ ′.κ[�], 0). (5.6)

Similarly, Tout is a tree directed outwards h, and the undirected version of Tout is a spanning
tree of graph C . Hence, for each local state � ∈ Vc\{h}, there is exactly one edge e ∈ Eout
with Lc(e).to = �. Thus, the following equation holds:

∑

1≤i≤|Eout|
max(δout(i), 0) =

∑

�∈Vc\{h}
max(σ ′.κ[�] − σ.κ[�], 0). (5.7)

By combining (5.6) and (5.7), we obtain the following:
∑

1≤i≤|Ein|
max(δin(i), 0) −

∑

1≤i≤|Eout|
max(δout(i), 0)

=
∑

�∈Vc\{h}

(

max(σ.κ[�] − σ ′.κ[�], 0) − max(σ ′.κ[�] − σ.κ[�], 0))

=
∑

�∈Vc\{h}

(

σ.κ[�] − σ ′.κ[�]) =
⎛

⎝

∑

�∈Vc
σ.κ[�] − σ ′.κ[�]

⎞

⎠ − (

σ.κ[h] − σ ′.κ[h]). (5.8)

As the initial schedule τ is applicable to σ , and τ(σ) = σ ′, by Lemma 5.5,
∑

�∈L(σ.κ[�]−
σ ′.κ[�]) = 0. As all rules in crepΩ

c [σ, τ] are from R|Ω and thus change only the counters of
local states in Vc, for each local state � ∈ L\Vc, its respective counter does not change, that
is, σ.κ[�] − σ ′.κ[�] = 0. Hence,

∑

�∈Vc (σ.κ[�] − σ ′.κ[�]) = 0. From this and Eq. (5.8), the
statement of the lemma follows. ��
Lemma 5.7 If τin denotes the schedule (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)), the fol-
lowing equation holds:

τin(σ).κ[�] =
{

σ ′.κ[h] + ∑

1≤i≤|Eout| max(δout(i), 0), if � = h

min(σ.κ[�], σ ′.κ[�]), if � ∈ Vc\{h}.
Proof We prove the lemma by case distinction:

Case � = h We show that (τin(σ)).κ[h] = σ.κ[h] + ∑

1≤i≤|Ein| max(δin(i), 0). Indeed, let
P be the indices of edges coming into h, i.e., P = {i | 1 ≤ i ≤ |Ein|, Lc(ein(i)) =

123

131

290 Form Methods Syst Des (2017) 51:270–307

r, h = r.to}. As all edges in Tin are oriented towards h, it holds that (τin(σ)).κ[h] equals to
σ.κ[h] + ∑

i∈P win(i). By unfolding the definition of win, we obtain that (τin(σ)).κ[h] =
σ.κ[h] + ∑

1≤i≤|Ein| max(δin(i), 0). We observe that by Lemma 5.6, this sum equals to
σ ′.κ[h] + ∑

1≤i≤|Eout| max(δout(i), 0). This proves the first case.

Case � ∈ Vc\{h} We show that (τin(σ)).κ[�] = min(σ.κ[�], σ ′.κ[�]). Indeed, fix a node
� ∈ Vc\{h} and construct two sets: the set of incoming edges In = {ein(i) | ∃�′ ∈
Vc. ein(i) = (�′, �)} and the singleton set of outgoing edges Out = {ein(i) | ∃�′ ∈
Vc. ein(i) = (�, �′)}. By summing up the effect of all transitions in τin, we obtain
(τin(σ)).κ[�] = σ.κ[�] + ∑

ein(i)∈In win(i) − ∑

eout(i)∈Out wout(i). By unfolding the defi-
nition of win, we obtain (τin(σ)).κ[�] = σ.κ[�] − ∑

ein(i)∈Out δin(i), which can be rewritten
as σ.κ[�] − max(σ.κ[�] − σ ′.κ[�], 0), which, in turn, equals to min(σ.κ[�], σ ′.κ[�]). This
proves the second case. ��

Now we are in a position to prove that schedule crepΩ
c [σ, τ] is applicable to configura-

tion σ and results in configuration τ(σ):

Lemma 5.8 The schedule crepΩ
c [σ, τ] has the following properties: (a) crepΩ

c [σ, τ] is
applicable to σ , and (b) crepΩ

c [σ, τ] results in τ(σ) when applied to σ .

Proof Denote with τin the prefix (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)) of the schedule
crepΩ

c [σ, τ]. For each j : 1 ≤ j ≤ |Eout|, denote with β j the prefix of crepΩ
c [σ, τ] that has

length of |Ein| + j . Note that β |Eout| = crepΩ
c [σ, τ].

Proving applicability of crepΩ
c [σ, τ] to σ We notice that all rules in crepΩ

c [σ, τ] are
from R|Ω and thus are unlocked, and that τin is applicable to σ by Lemma 5.4. Hence, we
only have to check that the values of counters from Vc are large enough, so that transitions
(rout(j), wout(j)) can fire.

We prove that each schedule β j is applicable to σ , for j : 1 ≤ j ≤ |Eout|. We do so by
induction on the distance from the root h in the tree Tout.

Base case root node h. Denote with Oh the set {(�, �′) ∈ Eout | � = h}. Let j1, . . . , jm
be the indices of all edges in Oh , and jm be the maximum among them.

From Lemma 5.7, (τin(σ)).κ[h] = σ ′.κ[h] + ∑

1≤i≤|Eout| max(δout(i), 0) = σ ′.κ[h] +
∑

eout(j)∈Oh
wout(j). Thus, every transition (eout(j), wout(j)) with eout(j) ∈ Oh , is appli-

cable to β j−1(σ). Also, (β jm (σ)).κ[h] = σ ′.κ[h].
Inductive step assume that for a node � ∈ Vc and an edge eout(k) = (�, �′) ∈ Eout outgoing

from node �, schedule βk is applicable to configuration σ . Show that for each edge eout(i)
outgoing from node �′ the following hold: (i) schedule β i is also applicable to σ ; and (ii)
β |Eout|(σ).κ[�′] = σ ′.κ[�′].

(i) As the sequence {eout(j)} j≤|Eout| is topologically sorted, for each edge eout(i) outgoing
from node �′, it holds that k < i .

From Lemma 5.7, we have that βk(σ).κ[�′] = min(σ.κ[�′], σ ′.κ[�′]). Because the
transition (eout(k), wout(k)) adds wout(k) to βk−1(σ).κ[�′], we have βk(σ).κ[�′] =
min(σ.κ[�′], σ ′.κ[�′]) + wout(k). Let S be the set of all immediate successors of eout(k),
i.e., S = {i | ∃�′′. (�′, �′′) = eout(i)}. From the definition of wout(k), it follows that
wout(k) = max(δout(k), 0) + ∑

s∈S wout(s). Thus, the transition (eout(i), wout(i)) for
edge eout(i) outgoing from node �′, can be executed.

(ii) Let j1, . . . , jm be the indices of all edges outgoing from �′, and jm be the maximum
among them. From (i), it follows that

(β jm (σ)).κ[�′] = min(σ.κ[�′], σ ′.κ[�′]) + max(δout(k), 0),

which equals to σ ′.κ[�′].

123

132

Form Methods Syst Des (2017) 51:270–307 291

This proves that the schedule β |Eout| = crepΩ
c [σ, τ] is applicable to σ .

Proving that crepΩ
c [σ, τ] results in τ(σ) From the induction above, we conclude that

for each � ∈ Vc, it holds that (β |Eout|(σ)).κ[�] = σ ′.κ[�]. Edges in the trees Tin and
Tout change only local states from Vc. We conclude that for all � ∈ L, it holds that
crepΩ

c [σ, τ](σ).κ[�] = σ ′.κ[�]. As the rules in non-singleton looplets do not change shared
variables, crepΩ

c [σ, τ](σ).g = σ.g = σ ′.g. Therefore, crepΩ
c [σ, τ](σ) = σ ′. ��

5.3 Representatives for one context and one looplet

We now summarize results from Sects. 5.1 and 5.2, giving the representative of a schedule τ

in the case when τ uses only the rules from one looplet, and does not change its context. If
the given looplet consists of a single rule, the construction is given in Sect. 5.1, and otherwise
in Sect. 5.2. We show that these constructions indeed give us a schedule of bounded length,
that reaches the same state as τ .

In the following, given a threshold automaton TA and a looplet c, we will say that a
schedule τ = t1, . . . , tn is contained in c, if [ti .rule] = c for 1 ≤ i ≤ n.

Theorem 5.1 Fix a threshold automaton, and a contextΩ , and a looplet c in the slice TA|Ω .
Let σ be a configuration and τ be a steady schedule contained in c and applicable to σ .
There exists a representative schedule crepΩ

c [σ, τ] with the following properties:

(a) schedule crepΩ
c [σ, τ] is applicable to σ , and crepΩ

c [σ, τ](σ) = τ(σ),
(b) the rule of each transition t in crepΩ

c [σ, τ] belongs to c, that is, [t.rule] = c,
(c) schedule crepΩ

c [σ, τ] is not longer than 2 · |c|.
Proof If |c| = 1, then we use a single accelerated transition or the empty schedule as
representative, as described in Lemma 5.1.

If |c| > 1, we construct the representative as in Sect. 5.2, so that by Lemma 5.8 property
(a) follows. For every edge e ∈ Ec, the rule Lc(e) belongs to c, and thus crepΩ

c [σ, τ] satisfies
property (b). As |Ein| ≤ |c| and |Eout| ≤ |c|, we conclude that |crepΩ

c [σ, τ]| ≤ 2 · |c|, and
thus property c) is also satisfied. From this and Lemma 5.8, we conclude that crepΩ

c [σ, τ] is
the required representative schedule. ��

Theorem 5.1 gives us a way to construct schemas that generate all representatives of the
schedules contained in a looplet:

Theorem 5.2 Fix a threshold automaton TA, a context Ω , and a looplet c in the slice TA|Ω .
There exists a schema cschemaΩ

c with the following properties:
Fix an arbitrary configuration σ and a steady schedule τ that is contained in c and is

applicable to σ . Let τ ′ = crepΩ
c [σ, τ] be the representative schedule of τ , from Theorem 5.1.

Then, path(σ, τ ′) is generated by cschemaΩ
c . Moreover, the length of cschemaΩ

c is at
most 2 · |c|.
Proof Note that τ ′ = crepΩ

c [σ, τ] can be constructed in two different ways depending on
the looplet c.

If |c| = 1, then by Lemma 5.1 we have that τ ′ = (r, f) for a rule r ∈ c and a factor
f ∈ N0. In this case we construct cschemaΩ

c to be

cschemaΩ
c = {Ω} r {Ω}.

It is easy to see that path(σ, τ ′) is generated by cschemaΩ
c , as well as that the length

of cschemaΩ
c is exactly 1, that is less than 2 · |c|.

123

133

292 Form Methods Syst Des (2017) 51:270–307

If |c| > 1, then we use the trees Tin and Tout to construct the schema cschemaΩ
c as

follows:

cschemaΩ
c = {Ω} rin(1) · · · rin(|Ein|) · rout(1) · · · rout(|Eout|) {Ω}. (5.9)

Since for an arbitrary configuration σ and a schedule τ , we use the same sequence of edges
in Eqs. (5.4) and (5.9) to construct crepΩ

c [σ, τ] and cschemaΩ
c , the schema cschemaΩ

c
generates all paths of the representative schedules, and its length is at most 2 · |c|. ��

6 Case II: one context and multiple looplets

In this section, we show that for each steady schedule, there exists a representative steady
schedule of bounded length that reaches the same final state.

Theorem 6.1 Fix a threshold automaton and a context Ω . For every configuration σ with
ω(σ) = Ω and every steady schedule τ applicable to σ , there exists a steady schedule
srepΩ [σ, τ] with the following properties:

(a) srepΩ [σ, τ] is applicable to σ , and srepΩ [σ, τ](σ) = τ(σ),
(b) |srepΩ [σ, τ]| ≤ 2 · |(R|Ω)|
To construct a representative schedule, we fix a context Ω of a TA, a configuration σ with

ω(σ) = Ω , and a steady schedule τ applicable to σ . The key notion in our construction is a
projection of a schedule on a set of looplets:

Definition 6.1 Let τ = t1, . . . , tk , for k > 0, be a schedule, and let C be a set of looplets.
Given an increasing sequence of indices i(1), . . . , i(m) ∈ {1, . . . , k}, where m ≤ k, i.e.,
i(j) < i(j + 1), for 1 ≤ j < m, a schedule ti(1) . . . ti(m) is a projection of τ on C , if each
index j ∈ {1, . . . , k} belongs to {i(1), . . . , i(m)} if and only if [t j .rule] ∈ C .

In fact, each schedule τ has a unique projection on a set C . In the following, we
write τ |c1,...,cm to denote the projection of τ on a set {c1, . . . , cm}.

Provided that c1, . . . , cm are all looplets of the slice R|Ω ordered with respect to ≺lin
C , we

construct the following sequences of projections on each looplet (note that π0 is the empty
schedule): πi = τ |c1 · · · · · τ |ci for 0 ≤ i ≤ m.

Having defined {πi }0≤i≤m , we construct the representative srepΩ [σ, τ] simply as a con-
catenation of the representatives of each looplet:

srepΩ [σ, τ] = crepΩ
c1 [π0(σ), τ |c1] · crepΩ

c2 [π1(σ), τ |c2] · . . . · crepΩ
cm [πm−1(σ), τ |cm]

Example 6.1 Consider the TA shown in Fig. 8. It has three looplets, namely c1 =
{r1, r2, r3, r4}, c2 = {r5}, c3 = {r6, r7, r8}, and the rules are depicted as solid, dotted,
and dashed, respectively. These looplets are ordered such that c1 ≺lin

C c2 ≺lin
C c3.

Let σ be the configuration represented in Fig. 8 left, i.e. κ[�3] = κ[�4] = κ[�5] =
1 and κ[�3] = κ[�4] = κ[�5] = 0. Let τ be the schedule (r4, 1), (r6, 1), (r3, 1),
(r4, 1), (r1, 1), (r2, 1), (r7, 1), (r3, 1), (r1, 1), (r5, 1), (r7, 1), (r4, 1), (r8, 1), (r1, 1), (r6, 1),
(r7, 1), (r5, 1), (r8, 1), (r7, 1). Note that τ is applicable to σ and that τ(σ) is the configura-
tion σ ′ from Fig. 8 right, i.e. κ[�5] = 1, κ[�6] = 2 and κ[�1] = κ[�2] = κ[�3] = κ[�4] = 0.
We construct the representative schedule srepΩ [σ, τ].

Projection of τ on the looplets c1, c2, and c3, gives us the following schedules:

τ |c1 = (r4, 1), (r3, 1), (r4, 1), (r1, 1), (r2, 1), (r3, 1), (r1, 1), (r4, 1), (r1, 1),

123

134

Form Methods Syst Des (2017) 51:270–307 293

σ :

1

2

3
4

5 6
r1 r2

r3r4

r5

r6

r7

r8

σ :

1

2

3
4

5 6
r1 r2

r3r4

r5

r6

r7

r8

τ

π1(σ) :

1

2

3
4

5 6
r1 r2

r3r4

r5

r6

r7

r8

π2(σ) :

1

2

3
4

5 6
r1 r2

r3r4

r5

r6

r7

r8
τ |c2

τ |c1 τ |c3

Fig. 8 Threshold automaton and configurations used in Example 6.1

τ |c2 = (r5, 1), (r5, 1),

τ |c3 = (r6, 1), (r7, 1), (r7, 1), (r8, 1), (r6, 1), (r7, 1), (r8, 1), (r7, 1).

Recall that

srepΩ [σ, τ] = crepΩ
c1 [π0(σ), τ |c1] · crepΩ

c2 [π1(σ), τ |c2] · crepΩ
c3 [π2(σ), τ |c3].

In order to construct this schedule, we firstly construct the required configurations. Note
that π0(σ) = σ . Then π1(σ) = τ |c1(σ), and this is the configuration from Fig. 8 lower
left, i.e. κ[�2] = 2, κ[�5] = 1 and κ[�1] = κ[�3] = κ[�4] = κ[�6] = 0. Configuration
π2(σ) = τ |c1 · τ |c2(σ) = τ |c2(π1(σ)) is represented on Fig. 8 lower right, i.e. κ[�5] = 3
and all other counters are zero.

Section 5 deals with the construction of representatives of schedules that contain rules
from only one looplet. Recall that construction of crepΩ

c1 [π0(σ), τ |c1] corresponds to the one
from Example 5.2. Thus, we know that

crepΩ
c1 [π0(σ), τ |c1] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0).

As c2 is a singleton looplet, we use the result of Sect. 5.1. Thus,

crepΩ
c2 [π1(σ), τ |c2] = (r5, 2).

Using the result from Sect. 5.2 we obtain that

crepΩ
c3 [π2(σ), τ |c3] = (r8, 0), (r7, 2),

and finaly we have the representative for τ that is

srepΩ [σ, τ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0), (r5, 2), (r8, 0), (r7, 2).

Lemma 6.1 (Looplet sorting)Given a threshold automaton, a contextΩ , a configuration σ ,
a steady schedule τ applicable to σ , and a sequence c1, . . . , cm of all looplets in the sliceR|Ω
with the property ci ≺lin

C c j for 1 ≤ i < j ≤ m, the following holds:

1. Schedule τ |c1 is applicable to the configuration σ .
2. Schedule τ |c2,...,cm is applicable to the configuration τ |c1(σ).
3. Schedule τ |c1 · τ |c2,...,cm , when applied to σ , results in configuration τ(σ).

123

135

294 Form Methods Syst Des (2017) 51:270–307

Proof In the following, we show Points 1–3 one-by-one.
We need extra notation. For a local state � we denote by 1� the |L|-dimensional vector,

where the �th component is 1, and all the other components are 0. Given a schedule ρ =
t1 · · · tk , we introduce a vectorΔκ (ρ) ∈ Z|L| to keep counter difference and a vectorΔg(ρ) ∈
N|Γ |
0 to keep difference on shared variables as follows:

Δκ (ρ) =
∑

1≤i≤|ρ|
ti .factor · (1ti .to − 1ti .from) and Δg(ρ) =

∑

1≤i≤|ρ|
ti .u

Proof of (1) Assume by contradiction that schedule τ |c1 is not applicable to configuration σ .
Thus, there is a schedule τ ′ and a transition t∗ that constitute a prefix of τ |c1 ,with the following
property: τ ′ is applicable to σ , whereas τ ′ · t∗ is not applicable to σ . Let � = t∗.from and
�′ = t∗.to.

There are three cases of why t∗ may be not applicable to τ ′(σ):
(i) There is not enough processes to move: (σ.κ + Δκ (τ ′ · t∗))[�] < 0. As τ is applicable

to σ , there is a transition t of τ with [t.rule] 	= c1 and t.to = � as well as t.factor > 0.
From this, by definition of ≺lin

C , it follows that [t.rule] ≺lin
C c1. This contradicts the lemma’s

assumption on the order c1 ≺lin
C · · · ≺lin

C cm .
(ii) The condition t∗.ϕrise is not satisfied, that is, τ ′(σ) 	|� t∗.ϕrise. Then, there is a guard

ϕ ∈ guard(t∗.ϕrise) with τ ′(σ) 	|� ϕ.
Since τ is applicable to σ , there is a prefix ρ · t of τ , for a schedule ρ and a transition t

that unlocks ϕ in ρ(σ), that is, ρ(σ) 	|� ϕ and t (ρ(σ)) |� ϕ. Thus, transition t changes the
context: ω(ρ(σ)) 	= ω(t (ρ(σ))). This contradicts the assumption that schedule τ is steady.

(iii) The condition t∗.ϕfall is not satisfied: τ ′(σ) 	|� t∗.ϕfall. Then, there is a guard ϕ ∈
guard(t∗.ϕfall) with τ ′(σ) 	|� ϕ.

Let ρ be the longest prefix of τ satisfying ρ|c1 = τ ′. Note that ρ · t∗ is also a prefix of τ . As
ρ|c1 = τ ′ and no transition decrements the shared variables, we conclude that (τ ′(σ)).g ≤
(ρ(σ)).g. From this and from the fact that τ ′(σ) 	|� ϕ, it follows that ρ(σ) 	|� ϕ. Thus
transition t∗ is not applicable to ρ(σ). This contradicts the assumption that τ is applicable
to σ .

From (i), (ii), and (iii), we conclude that (1) holds.

Proof of (2)We show that τ |c2,...,cm is applicable to τ |c1(σ).
To this end, we fix an arbitrary prefix τ ′ of τ , a transition t , and a suffix τ ′′, that constitute

τ , that is, τ = τ ′ · t · τ ′′. We show that if schedule τ ′|c2,...,cm is applicable to τ |c1(σ), then so
is (τ ′ · t)|c2,...,cm .

Let us assume that τ ′|c2,...,cm is applicable to τ |c1(σ), and let σ ′′ denote the resulting state
(τ |c1 · τ ′|c2,...,cm)(σ). We consider two cases:

– [t.rule] = c1. This case holds trivially, as (τ ′ · t)|c2,...,cm equals to τ ′|c2,...,cm , which is
applicable to τ |c1(σ) by assumption.

– [t.rule] 	= c1. In order to prove that(τ ′ · t)|c2,...,cm is applicable to τ |c1(σ), we show that
counters σ ′′.κ and shared variables σ ′′.g are large enough, so that transition t is applicable
to σ ′′:
(i) We start by showing that σ ′′.κ[t.from] ≥ t.factor. We distinguish between different

cases on source and target states of transition t .

(i.A) We will show by contradiction that there is no rule r ∈ c1 with t.to = r.from. Let’s
assume it exists. Then, on one hand, as [t.rule] 	= c1, by definition of ≺lin

C , it follows
that [t.rule] ≺lin

C . . . ≺lin
C c1. On the other hand, as [t.rule] 	= c1 and c1, . . . , cm are

all classes of the rules used in τ , it holds that [t.rule] ∈ {c2, . . . , cm}. By the lemma’s

123

136

Form Methods Syst Des (2017) 51:270–307 295

assumption, c1 ≺lin
C · · · ≺lin

C cm , and thus, c1 ≺lin
C · · · ≺lin

C [t.rule]. We arrive at a
contradiction.

(i.B) Let’s consider the case of a rule r ∈ c1 with r.to = t.from. Assume by contradiction
that t is not applicable to σ ′′, that is, σ ′′.κ[t.from] < t.factor. On one hand, transition t
is not applicable to σ ′′ = (τ |c1 · τ ′|c2,...,cm)(σ). Then by the definition of Δκ , it
holds that σ [t.from] + (Δκ (τ |c1 · τ ′|c2,...,cm) + Δκ (t))[t.from] < 0. By observing that
τ |c1 = τ ′|c1 + τ ′′|c1 , we derive the following inequality:

σ [t.from]
+(Δκ (τ ′|c1) + Δκ (τ ′′|c1) + Δκ (τ ′|c2,...,cm) + Δκ (t))[t.from] < 0 (6.1)

On the other hand, schedule τ = τ ′ · t · τ ′′ is applicable to configuration σ . Thus,
σ [t.from] + (Δκ (τ ′) + Δκ (t) + Δκ (τ ′′))[t.from] ≥ 0. By observing that τ |c1 =
τ ′|c1 + τ ′′|c1 and τ |c2,...,cm = τ ′|c2,...,cm + τ ′′|c2,...,cm , we arrive at:

σ [t.from] + (Δκ (τ ′|c1) + Δκ (τ ′|c2,...,cm)

+Δκ (t) + Δκ (τ ′′|c1) + Δκ (τ ′′|c2,...,cm))[t.from] ≥ 0 (6.2)

By subtracting (6.2) from (6.1), and by commutativity of vector addition, we arrive at
Δκ (τ ′′|c2,...,cm)[t.from] > 0. Thus, there is a transition t ′ in τ ′′|c2,...,cm and a rule r ′ ∈ c1
such that t ′.to = r ′.from. We again arrived at the contradictory Case (i.A). Hence,
transition t must be applicable to configuration σ ′′.

(i.C) Otherwise, neither t.from nor t.to belong to the set of local states affected by the
rules from c1, i.e., {t.from, t.to} ∩ {� | ∃r ∈ c1. r.from = � ∨ r.to = �} is empty.
Then, schedule τ |c1 does not change the counter κ[t.from], and Δκ (τ ′)[t.from] =
Δκ (τ ′|c2,...,cm)[t.from].As t is applicable to τ ′(σ), that is, (τ ′(σ)).κ[t.from] ≥ t.factor,
we conclude that σ ′′.κ[t.from] ≥ t.factor.

(ii) We now show that σ ′′ |� t.ϕrise ∧ t.ϕfall. Assume by contradiction that σ ′′ 	|� t.ϕrise ∧
t.ϕfall. There are two cases to consider.

If σ ′′ 	|� t.ϕrise. By definition, the shared variables are never decremented in a non-singleton
looplet. As τ ′ is a prefix of τ , schedule τ |c1 ·τ ′|c2,...,cm includes all transitions
of τ ′. Thus, Δg(τ |c1 · τ ′|c2,...,cm) ≥ Δg(τ

′). From this and σ ′′ 	|� t.ϕrise, it
follows that τ ′(σ) 	|� t.ϕrise. This contradicts applicability of τ to σ .

If σ ′′ 	|� t.ϕfall. Then, there is a guard ϕ ∈ guard(t.ϕfall) with τ ′′(σ) 	|� ϕ. On one hand,
τ |c1 · τ ′|c2,...,cm is applicable to σ . On the other hand, τ is applicable to σ .
We notice that Δg(τ) = Δg(τ |c1) + Δg(τ

′|c2,...,cm) + Δg(τ
′′|c2,...,cm) +

Δg(t) ≥ Δg(τ |c1) + Δg(τ
′|c2,...,cm). As shared variables are never

decreased, it follows that (τ |c1 · τ ′|c2,...,cm)(σ) 	|� ϕ. Thus, ω(σ) 	=
ω(τ(σ)). This contradicts the assumption on that schedule τ is steady.

Having proved that, we conclude that transition t is applicable to configuration (τ |c1 ·
τ ′|c2,...,cm)(σ). Thus, by induction (τ |c1 · τ |c2,...,cm)(σ) is applicable to σ . We conclude that
Point 2 of the theorem holds.

Proof of (3) By the commutativity property of vector addition,

Δκ (τ |c1 · τ |c2,...,cm) = Δκ (τ |c1) + Δκ (τ |c2,...,cm) =
∑

1≤i≤|τ |
Δκ (ti) = Δκ (τ).

Thus, (τ |c1 · τ |c2,...,cm)(σ) = τ(σ), and Point (3) follows.
We have thus shown all three points of Lemma 6.1. ��

123

137

296 Form Methods Syst Des (2017) 51:270–307

Proof (of Theorem 6.1) By iteratively applying Lemma 6.1, we prove by induction that
schedule τ |c1 ·. . .·τ |cm is applicable to σ and results in τ(σ). FromTheorem 5.1, we conclude
that each schedule τ |ci can be replaced by its representative crepΩ

ci [πi−1(σ), τ |ci]. Thus,
srepΩ [σ, τ] is applicable to σ and results in τ(σ). By Proposition 3.4, schedule srepΩ [σ, τ]
is steady, since ω(σ) = ω(τ(σ)). ��

Finally, we show that for a given context, there is a schema that generates all paths of such
representative schedules.

Theorem 6.2 Fix a threshold automaton and a context Ω . Let c1, . . . , cm be the sorted
sequence of all looplets of the slice R|Ω , i.e., c1 ≺lin

C . . . ≺lin
C cm. Schema sschemaΩ =

cschemaΩ
c1 ◦· · ·◦cschemaΩ

cm has two properties: (a) For a configuration σ withω(σ) = Ω

and a steady schedule τ applicable to σ , path(σ, τ ′) of the representative τ ′ = srepΩ [σ, τ]
is generated by sschemaΩ ; and (b) the length of sschemaΩ is at most 2 · |(R|Ω)|.
Proof Fix a configuration σ with ω(σ) = Ω and a steady schedule τ applicable to σ . As
srepΩ [σ, τ] is a sorted sequence of the looplet representatives, all paths of srepΩ [σ, τ] are
generated by sschemaΩ , which is not longer than 2 · |(R|Ω)|. ��

7 Proving the main result

Using the results from Sects. 5 and 6, for each configuration and each schedule (without
restrictions) we construct a representative schedule.

Theorem 7.1 Given a threshold automaton, a configuration σ , and a schedule τ applicable
to σ , there exists a schedule rep[σ, τ] with the following properties:

(a) rep[σ, τ] is applicable to σ , and rep[σ, τ](σ) = τ(σ),
(b) |rep[σ, τ]| ≤ 2 · |R| · (|Φrise| + |Φfall| + 1) + |Φrise| + |Φfall|.
Proof Given a threshold automaton, fix a configuration σ and a schedule τ applicable to σ .
Let Ω1, . . . , ΩK+1 be the maximal monotonically increasing sequence of contexts such
that path(σ, τ) is consistent with the sequence by Definition 3.7. From Proposition 3.2, the
length of the sequence is K + 1 = |Φrise| + |Φfall| + 1. Thus, there are at most K transitions
t�1 , . . . , t

�
K in τ that change their context, i.e., for i ∈ {1, . . . , K }, it holds ω(σi) � ω(t�i (σi))

for t�i ’s respective state σi in τ . Therefore, we can divide τ into K + 1 steady schedules
separated by the transitions t�1 , . . . , t

�
K :

τ = ν1 · t�1 · ν2 · · · νK · t�K · νK+1.

Now, the main idea is to replace the steady schedules with their representatives from The-
orem 6.1. That is, using t�1 , . . . , t

�
K and ν1, . . . , νK+1, we construct the schedules ρ1, . . . , ρK

(by convention, ρ0 is the empty schedule):

ρi = ρi−1 · νi · t�i for 1 ≤ i ≤ K .

Finally, the representative schedule rep[τ, σ] is constructed as follows:

repΩ1
[σ, ν1] · t�1 · repΩ2

[ρ1(σ), ν2] · · · repΩK
[ρK−1(σ), νK] · t�K · repΩK+1

[ρK (σ), νK+1]
From Theorem 6.1, it follows that rep[τ, σ] is applicable to σ and it results in τ(σ).

Moreover, the representative of a steady schedule is not longer than 2|R|, which together
with K transitions gives us the bound 2|R|(K+1)+K . Aswe have that K = |Φrise|+|Φfall|,
this gives us the required bound. ��

123

138

Form Methods Syst Des (2017) 51:270–307 297

Further, given a maximal monotonically increasing sequence z of contexts, we construct
a schema that generates all paths of the schedules consistent with z:

Theorem 7.2 For a threshold automaton and a monotonically increasing sequence z of
contexts, there exists a schema schema(z) that generates all paths of the representative
schedules that are consistent with z, and the length of schema(z) does not exceed 3 · |R| ·
(|Φrise| + |Φfall|) + 2 · |R|.
Proof Given a threshold automaton, let ρall be the sequence r1, . . . , r|R| of all rules from R,
and let z = Ω0, . . . , Ωm be amonotonically increasing sequence of contexts. By the construc-
tion in Theorem 7.1, each representative schedule rep[σ, τ] consists of the representatives of
steady schedules terminated with transitions that change the context. Then, for each context
Ωi , for 0 ≤ i < m, we compose sschemaΩ and {Ωi } ρall {Ωi+1}. This composition gener-
ates the representative of a steady schedule and the transition changing the context from Ωi

to Ωi+1. Consequently, we construct the schema(z) as follows:

(sschemaΩ0 ◦ {Ω0} ρall {Ω1})◦ . . .◦ (sschemaΩm−1 ◦ {Ωm−1} ρall {Ωm}) ◦ sschemaΩm

By inductively applying Theorem 6.2, we prove that schema(z) generates all paths of
schedules rep[σ, τ] that are consistent with the sequence z. We get the needed bound on the
length of schema(z) by using an argument similar to Theorem 7.1 and by noting that for
every context, instead of one rule that is changing it, we add |R| extra rules. ��

8 Complete set of schemas and optimizations

Our proofs show that the set of schemas is easily computed from the TA: the threshold
guards are syntactic parts of the TA, and enable us to directly construct increasing sequences
of contexts. To find a slice of the TA for a given context, we filter the rules with unlocked
guards, i.e., check whether the context contains the guard. To produce the simple schema of
a looplet, we compute a spanning tree over the slice. To construct simple schemas, we do
a topological sort over the looplets. For example, it takes just 30 s to compute the schemas
in our longest experiment that runs for 4 h. In our tool we have implemented the following
optimizations that lead to simpler and fewer SMT queries.

Entailment optimization We say that a guard ϕ1 ∈ Φrise entails a guard ϕ2 ∈ Φrise, if for all
combinations of parameters p ∈ PRC and shared variables g ∈ N|Γ |

0 , it holds that (g, p) |�
ϕ1 → ϕ2. For instance, in our example, ϕ3 : y ≥ (2t +1)− f entails ϕ2 : y ≥ (t +1)− f . If
ϕ1 entails ϕ2, then we can omit all monotonically increasing sequences that contain a context
(Ω rise,Ω fall) with ϕ1 ∈ Ω rise and ϕ2 /∈ Ω rise. If the number of schemas before applying this
optimization is m! and there are k entailments, then the number of schemas reduces from m!
to (m − k)!. A similar optimization is introduced for the guards from Φfall.

Control flow optimization Based on the proof of Lemma 6.1, we introduce the following
optimization for TAs that are directed acyclic graphs (possibly with self loops). We say
that a rule r ∈ R may unlock a guard ϕ ∈ Φrise, if there is a p ∈ PRC and g ∈ N|Γ |

0
satisfying: (g, p) |� r.ϕrise ∧ r.ϕfall (the rule is unlocked); (g, p) 	|� ϕ (the guard is locked);
(g + r.u, p) |� ϕ (the guard is now unlocked).

In our example from Fig. 2, the rule r1 : true �→ x++ may unlock the guard ϕ1 : x ≥
�(n + t)/2� − f .

123

139

298 Form Methods Syst Des (2017) 51:270–307

Let ϕ ∈ Φrise be a guard, r ′
1, . . . , r

′
m be the rules that use ϕ, and r1, . . . , rk be the rules

that may unlock ϕ. If ri ≺lin
C r ′

j , for 1 ≤ i ≤ k and 1 ≤ j ≤ m, then we exclude some

sequences of contexts as follows (we call ϕ forward-unlockable). Let ψ1, . . . , ψn ∈ Φrise be
the guards of r1, . . . , rk . Guardϕ cannot be unlocked beforeψ1, . . . , ψn , and thuswe can omit
all sequences of contexts, where ϕ appears in the contexts before ψ1, . . . , ψn . Moreover, as
ψ1, . . . , ψn are the only guards of the rules unlocking ϕ, we omit the sequences with different
combinations of contexts involving ϕ and the guards from Φrise\{ϕ,ψ1, . . . , ψn}. Finally,
as the rules r ′

1, . . . , r
′
m appear after the rules r1, . . . , rk in the order ≺lin

C , the rules r ′
1, . . . , r

′
m

appear after the rules r1, . . . , rk in a rule sequence of every schema. Thus, we omit the
combinations of the contexts involving ϕ and ψ1, . . . , ψn .

Hence, we add all forward-unlockable guards to the initial context (we still check the
guards of the rules in the SMT encoding in Sect. 9). If the number of schemas before applying
this optimization ism! and there are k forward-unlocking guards, then the number of schemas
reduces from m! to (m − k)!. A similar optimization is introduced for the guards from Φfall.

9 Checking a schema with SMT

We decompose a schema into a sequence of simple schemas, and encode the simple schemas.
Given a simple schema S = {Ω1} r1, . . . , rm {Ω2}, which contains m rules, we construct
an SMT formula such that every model of the formula represents a path from L(S)—the
languageof paths generatedby schema S—and for everypath inL(S) there is a corresponding
model of the formula. Thus, we need tomodel a path ofm+1 configurations andm transitions
(whose acceleration factors may be 0).

To represent a configurationσi , for 0 ≤ i ≤ m, we introduce two vectors of SMTvariables:
Given the set of local statesL and the set of shared variablesΓ , a vectorki = (ki1, . . . , k

i|L|) to
represent the process counters, a vector xi = (xi1, . . . , x

i|Γ |) to represent the shared variables.
We call the pair (ki , xi) the layer i , for 1 ≤ i ≤ m.

Based on this we encode schemas, for which the sequence of rules r1, . . . , rm is fixed.
We exploit this in two ways: First, we encode for each layer i the constraints of rule ri .
Second, as this constraint may update only two counters—the processes move from and
move to according to the rule—we do not need |L| counter variables per layer, but only
encode the two counters per layer that have actually changed. As is a common technique in
boundedmodel checking, the counters that are not changed are “reused” from previous layers
in our encoding. By doing so, we encode the schema rules with |L| + |Γ | + m · (2 + |Γ |)
integer variables, 2m equations, and inequalities in linear integer arithmetic that represent
threshold guards that evaluate to true (at most the number of threshold guards times m of
these inequalities).

In the following, we use the notation [k : m] to denote the set {k, . . . ,m}. In order to reuse
the variables from the previous layers, we introduce a function υ : L × [0 : m] → [0 : m]
that for a layer i ∈ [0 : m] and a local state � ∈ L, gives the largest number j ≤ i of the
layer, where the counter k j

� is updated:

123

140

Form Methods Syst Des (2017) 51:270–307 299

υ(�, i) =
{

i, if i = 0 ∨ � ∈ {ri .from, ri .to}
υ(�, i − 1), otherwise.

Having defined layers, we encode: the effect of rules on counters and shared variables (in
formulas M and U below), the effect of rules on the configuration (T), restrictions imposed
by contexts (C), and, finally, the reachability question.

To represent m transitions, for each transition i ∈ [1 : m], we introduce a non-negative
variable δi for the acceleration factor, and define two formulas: formula M�(i − 1, i) to
express the update of the counter of local state � ∈ L, and formula Ux (i − 1, i) to represent
the update of the shared variable x ∈ Γ :

M�(i − 1, i) ≡

⎧

⎪
⎨

⎪
⎩

ki� = kυ(�,i−1)
� + δi , for � = ri .to and i ∈ [1 : m]

ki� = kυ(�,i−1)
� − δi , for � = ri .from and i ∈ [1 : m]

true, otherwise

Ux (i − 1, i) ≡
{

xi = xi−1 + δi · u, if u = ri .u[j] > 0,

true, otherwise.

The formula T (i − 1, i) collects all constraints by the rule ri :

T (i − 1, i) ≡
∧

�∈L
M�(i − 1, i) ∧

∧

x∈Γ

Ux (i − 1, i).

For a formula ϕ, we denote by ϕ[xi] the formula, where each variable x ∈ Γ is substituted
with xi . Then, given a context Ω = (Ω rise,Ω fall), a formula CΩ(i) adds the constraints of
the context Ω on the layer i :

CΩ(i) ≡
∧

ϕ∈Ω rise

ϕ[xi] ∧
∧

ϕ∈Φrise\Ω rise

¬ϕ[xi] ∧
∧

ϕ∈Ω fall

¬ϕ[xi] ∧
∧

ϕ∈Φfall\Ω fall

ϕ[xi].

Finally, the formula CΩ1(0) ∧ T (0, 1) ∧ · · · ∧ T (m − 1,m) ∧ CΩ2(m) captures all the
constraints of the schema S = {Ω1} r1, . . . , rm {Ω2}, and thus, its models correspond to the
paths of schedules that are generated by S.

Let I (0) be the formula over the variables of layer i that captures the initial states of
the threshold automaton, and B(i) be a state property over the variables of layer i . Then,
parameterized reachability for the schema S is encoded with the following formula in linear
integer arithmetic:

I (0) ∧ CΩ1(0) ∧ T (0, 1) ∧ · · · ∧ T (m − 1,m) ∧ CΩ2(m) ∧ (

B(0) ∨ · · · ∨ B(m)
)

.

10 Experiments

We have extended our tool ByMC (Byzantine Model Checker [2]) with the technique
discussed in this paper. All of our benchmark algorithmswere originally published in pseudo-
code, and we model them in a parametric extension of Promela, which was discussed
in [27,34].

10.1 Benchmarks

We revisited several asynchronous FTDAs that were evaluated in [33,41]. In addition to these
classic FTDAs, we considered asynchronous (Byzantine) consensus algorithms, namely,

123

141

300 Form Methods Syst Des (2017) 51:270–307

BOSCO [57], C1CS [10], and CF1S [18], that are designed to work despite partial failure
of the distributed system. In contrast to the conference version of this paper [39], we used
a new version of the benchmarks from [37] that have been slightly updated for liveness
properties. Hence, for some benchmarks, the running times of our tool may vary from [39].
The benchmarks, their source code in parametric of Promela, and the code of the threshold
automata are freely available [30].

10.2 Implementation

ByMC supports several tool chains (shown in Fig. 1, p. 3), the first using counter abstraction
(that is, process counters over an abstract domain), and the second using counter systems
with counters over integers:

Data and counter abstractions In this chain, the message counters are first mapped to para-
metric intervals, e.g., counters range over the abstract domain D̂ = {[0, 1), [1, t + 1), [t +
1, n − t), [n − t,∞)}. By doing so, we obtain a finite (data) abstraction of each process,
and thus we can represent the system as a counter system: We maintain one counter κ[�] per
local state � of a process, as well as the counters for the sent messages. Then, in the counter
abstraction step, every process counter κ[�] is mapped to the set of parametric intervals D̂.
As the abstractions may produce spurious counterexamples, we run them in an abstraction-
refinement loop that incrementally prunes spurious transitions and unfair executions. More
details on the data and counter abstractions and refinement can be found in [33]. In our
experiments, we use two kinds of model checkers as backend:

1. BDD The counter abstraction is checked with nuXmv [11] using Binary Decision Dia-
grams (BDDs). For safety properties, the tool executes the command check_invar.
In our experiments, we used the timeout of 3 days, as there was at least one benchmark
that needed a bit more than a day to complete.

2. BMC The counter abstraction is checked with nuXmv using bounded model check-
ing [6]. To ensure completeness (at the level of counter abstraction), we explore the
computations of the length up to the diameter bounds that were obtained in [41].
To efficiently eliminate shallow spurious counterexamples, we first run the bounded
model checker in the incremental mode up to length of 30. This is done by issuing
the nuXmv command check_ltlspec_sbmc_inc, which uses the built-in SAT
solver MiniSAT. Then, we run a single-shot SAT problem by issuing the nuXmv com-
mand gen_ltlspec_sbmc and checking the generated formula with the SAT solver
lingeling [5]. In our experiments, we set the timeout to 1 day.

Reachability for threshold automata In this tool chain, to obtain a threshold automaton, our
tool first applies data abstraction over the domain D̂ to the Promela code, which abstracts
the message counters that keep the number of messages received by every process, while
the message counters for the sent messages are kept as integers. More details can be found
in [40]. Having constructed a threshold automaton, we compare two verification approaches:

1. PARA2 Bounded model checking with SMT The approach of this article. BYMC enumer-
ates the schemas (as explained in Sect. 4), encodes them in SMT (as explained in Sect. 9)
and checks every schema with the SMT solver Z3 [17].

123

142

Form Methods Syst Des (2017) 51:270–307 301

2. FAST Acceleration of counter automata In this chain, our tool constructs a threshold
automaton and checks the reachability properties with the existing tool FAST [3]. For
comparison with our tool, we run FAST with the MONA plugin that produced the best
results in our experiments.

The challenge in the verification of FTDAs is the immense non-determinism caused
by interleavings, asynchronous message passing, and faults. In our modeling, all these are
reflected in non-deterministic choices in the Promela code. To obtain threshold automata,
as required for our technique, our tool constructs a parametric interval data abstraction [33]
that adds to non-determinism.

Comparing to [39], in this paper, we have introduced an optimization to schema checking
that dramatically reduced the running times for some of the benchmarks. In this optimization,
we group schemas in a prefix tree, whose nodes are contexts and edges are simple schemas.
In each node of the prefix tree, our tool checks, whether there are configurations that are
reachable from the initial configurations by following the schemas in the prefix. If there are
no such reachable configurations, we can safely prune the whole suffix and thus prove many
schemas to be unsatisfiable at once.

10.3 Evaluation

Table 1 summarizes the features of threshold automata that are automatically constructed
by ByMC from parametric Promela. The number of local states |L| varies from 7 (FRB
and STRB) to hundreds (C1CS and CBC). Our threshold automata are obtained by apply-
ing interval abstraction to Promela code, which keeps track of the number of messages
received by each process. Thus, the number |L| is proportional to the number of control
states and |̂D|k , where ̂D is the domain of parametric intervals (discussed above) and k is the
number of message types. Sometimes, one can manually construct a more efficient threshold
automaton that models the same fault-tolerant distributed algorithm and preserves the same
safety properties. For instance, Fig. 2 shows a manual abstraction of ABA that has only 5
local states, in contrast to 61 local states in the automatic abstraction (cf. Table 1). We leave
open the question of whether one can automatically construct a minimal threshold automaton
with respect to given specifications.

Table 2 summarizes our experiments conducted with the techniques introduced in
Sect. 10.2: BDD, BMC, PARA2, and FAST. On large problems, our new technique works
significantly better than BDD- and SAT-based model checking. BDD-based model checking
works very well on top of counter abstraction. Importantly, our new technique does not use
abstraction refinement. In comparison to our earlier experiments [39], we verified safety of
a larger set of benchmarks with nuXmv. We believe that this is due to the improvements
in nuXmv and, probably, slight modifications of the benchmarks from [37].

NBAC and NBACC are challenging as the model checker produces many spurious coun-
terexamples, which are an artifact of counter abstraction losing or adding processes. When
using SAT-based model checking, the individual calls to nuXmv are fast, but the abstraction-
refinement loop times out, due to a large number of refinements (about 500). BDD-based
model checking times out when looking for a counterexample. Our new technique, preserves
the number of proceses, and thus, there are no spurious counterexamples of this kind. In
comparison to the general-purpose acceleration tool FAST, our tool uses less memory and is
faster on the benchmarks where FAST is successful.

As predicted by the distributed algorithms literature, our tool finds counterexamples, when
we relax the resilience condition. In contrast to counter abstraction, our new technique gives

123

143

302 Form Methods Syst Des (2017) 51:270–307

Table 1 The benchmarks used in our experiments. Somebenchmarks, e.g., ABA, require us to consider several
cases on the parameters, which are mentioned in the column “Case”. The meaning of the other columns is as
follows: |L| is the number of local states in TA, |R| is the number of rules in TA, |Φrise| and |Φfall| is the
number of (R)- and (F)-guards respectively. Finally, |S| is the number of enumerated schemas, and Bound is
the theoretical upper bound on |S|, as given in Theorem 4.2

Input Case Threshold Automaton Schemas

FTDA (if more than one) |L| |R| |Φrise| |Φfall| |S| Theor. Bound

1 FRB — 7 10 1 0 1 1

2 STRB — 7 15 3 0 4 6

3 NBACC — 78 1356 0 0 1 1

4 NBAC — 77 988 6 0 448 720

5 NBACG — 24 44 4 0 14 24

6 CF1S f = 0 41 266 4 0 14 24

7 CF1S f = 1 41 266 4 1 60 120

8 CF1S f > 1 68 672 6 1 3429 5040

9 C1CS f = 0 101 1254 8 0 70 4 · 104
10 C1CS f = 1 70 629 6 1 140 5040

11 C1CS f > 1 101 1298 8 1 630 3.6 · 105
12 BOSCO n+3t

2 1 = n − t 28 126 6 0 20 720

13 BOSCO n+3t
2 1 > n − t 40 204 8 0 70 4 · 104

14 BOSCO n+3t
2 1 < n − t 32 158 6 0 20 720

15 BOSCO n > 5t ∧ f = 0 82 1292 12 0 924 4.8 · 108
16 BOSCO n > 7t 90 1656 12 0 924 4.8 · 108
17 ABA n+t

2 = 2t + 1 37 180 6 0 448 720

18 ABA n+t
2 > 2t + 1 61 392 8 0 2100 4 · 104

19 CBC n
2 < n − t ∧ f = 0 164 1996 22 12 2 2.9 · 1038

20 CBC n
2 n − t ∧ f = 0 73 442 17 12 2 8.8 · 1030

21 CBC n
2 < n − t ∧ f > 0 304 6799 27 12 5 2 · 1046

22 CBC n
2 n − t ∧ f > 0 161 2040 22 12 5 2.9 · 1038

us concrete values of the parameters and shows how many processes move at each step of
the counterexample.

Our new method uses integer counters and thus does not introduce spurious behavior due
to counter abstraction, but still has spurious behavior due to data abstraction on complex
FTDAs such as BOSCO, C1CS, and NBAC. In these cases, we manually refine the interval
domain by adding new symbolic interval borders, see [33]. We believe that these intervals
can be obtained directly from threshold automata, and no refinement is necessary. We leave
this question to future work.

Sets of schemas and time to check a single schema On one hand, Theorem 4.2 gives us a
theoretical bound on the number of schemas to be explored. On the other hand, optimizations
discussed in Sect. 8 introduce many ways of reducing the number of schemas. Two columns
in Table 1 compare the theoretical bound and the practical number of schemas: the column
“Theoretical bound” shows the bound of (|Φrise| + |Φfall|)!, while the column |S| shows the
actual number of schemas. (For reachability, we are merging the schemas with the prefix
tree, and thus the actual number of explored schemas is even smaller.) As one can see, the
theoretical bound is quite pessimistic, and is only useful to show completeness of the set of

123

144

Form Methods Syst Des (2017) 51:270–307 303

Table 2 Summary of our experiments on AMDOpteron® 6272, 32 cores, 192 GB. The symbols are: “ ” for

timeout (72 h. for BDD and 24 h. otherwise); “ ” for memory overrun of 32 GB; “ ” for BDD nodes overrun;
“ ” for timeout in the refinement loop (72 h. for BDD and 24 h. otherwise); “ ” for spurious counterexamples
due to counter abstraction

schemas. The much smaller numbers for the fault-tolerant distributed algorithms are due to
a natural order on guards, e.g., as x ≥ t + 1 becomes true earlier than x ≥ n − t under the
resilience condition n > 3t . The drastic reduction in the case of CBC is due to the control flow
optimization discussed in Sect. 8 and the fact that basically all guards are forward-unlocking.

When doing experiments, we noticed that the only kinds of guards that cannot be treated
by our optimizations and blow up the number of schemas are the guards that use independent
shared variables. For instance, consider the guards x0 ≥ n − t and x1 ≥ n − t that are
counting the number of 0’s and 1’s sent by the correct processes. Even though they are
mutually exlusive under the resilience condition n > 3t , our tool has to explore all possible
orderings of these guards. We are not aware of a reduction that would prevent our method
from exploding in the number of schemas for this example.

Since the schemas can be checked independently, one can check them in parallel. Figure 9
shows a distribution of schemas along with the time needed to check an individual schema.
There are only a few divergent schemas that required more than 7 s to get checked, while the
large portion of schemas require 1–3 s. Hence, a parallel implementation of the tool should
verify the algorithms significantly faster. We leave such a parallel extension for future work.

123

145

304 Form Methods Syst Des (2017) 51:270–307

100

101

102

103

104

1 2 3 4 6 7 0 5 10 15 20 25 30 35 40
Seconds to check a single schema (T)

Number of schemas that require [T, T+1) seconds to be checked (log10)

50
64

30
44

11
95

48
0

20
5

11
5
10

9

28

1 1 1 1

2

1 1 1 1 1

Fig. 9 The times required to check individual schemas and the distribution of schemas over these times (the
value 0 refers to the running times of less than a second). The benchmarks containing the schemas that are
verified in (a) T ≥ 8sec. and (b) T ≥ 18sec. are: (a) C1CS, CBC, CF1S, and (b) CBC and CF1S

11 Discussions and related work

We introduced a method to efficiently check reachability properties of FTDAs in a parame-
terized way. If n > 7t as for BOSCO, even the simplest interesting case with t = 2 leads to
a system size that is out of range of explicit state model checking. Hence, FTDAs force us
to develop parameterized verification methods.

The problem we consider is concerned with parameterized model checking, for which
many interesting results exist [14,15,21–23,35]; cf. [7] for a survey. However, the FTDAs
considered by us run under the different assumptions.

From a methodological viewpoint, our approach combines techniques from several areas
including compact programs [49], counter abstraction [4,55], completeness thresholds for
bounded model checking [6,16,42], partial order reduction [8,28,53,59], and Lipton’s
movers [48]. Regarding counter automata, our result entails flattability [46] of every counter
system of threshold automata: a complete set of schemas immediately gives us a flat counter
automaton. Hence, the acceleration-based semi-algorithms [3,46] should in principle termi-
nate on the systems of TAs, though it did not always happen in our experiments. Similar to our
SMT queries based on schemas, the inductive data flow graphs iDFG introduced in [24] are a
succinct representations of schedules (they call them traces) for systems where the number of
processes (or threads) is fixed. The work presented in [25] then considers parameterized ver-
ification. Further, our execution schemas are inspired by a general notion of semi-linear path
schemas SLPS [45,46]. We construct a small complete set of schemas and thus a provably
small SLPS. Besides, we distinguish counter systems and counter abstraction: the former
counts processes as integers, while the latter uses counters over a finite abstract domain, e.g.,
{0, 1,many} [55].

Many distributed algorithms can be represented with I/O Automata [50] or TLA+ [44]. In
these frameworks, correctness is typically shownwith a proof assistant, whilemodel checking

123

146

Form Methods Syst Des (2017) 51:270–307 305

is used as a debugger on small instances. Parameterized model checking is not a concern
there, except one notable result [32].

The results presented in this article can be used to check reachability properties of FTDAs.
We can thus establish safety of FTDAs. However, for fault-tolerant distributed algorithms
liveness is as important as safety: The seminal impossibility result by Fischer, Lynch, and
Paterson [26] states that a fault-tolerant consensus algorithm cannot ensure both safety and
liveness in asynchronous systems. In recent work [37] we also considered liveness verifica-
tion, ormore precisely, verification of temporal logic specificationwith theG andF temporal
operators. In [37], we use the results of this article as a black box and show that combinations
of schemas can be used to generate counterexamples to liveness properties, and that we can
verify both safety and liveness by complete SMT-based bounded model checking.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). We are grateful to
Azadeh Farzan for valuable discussions during her stay in Vienna and to the anonymous reviewers for their
insightful comments regarding partial order reduction, and for suggestions that helped us in improving the
presentation of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Attiya H, Welch J (2004) Distributed computing, 2nd edn. Wiley, New York
2. ByMC: Byzantinemodel checker (2013). http://forsyte.tuwien.ac.at/software/bymc/. Accessed Dec 2016
3. Bardin S, Finkel A, Leroux J, Petrucci L (2008) Fast: acceleration from theory to practice. STTT

10(5):401–424
4. BaslerG,MazzucchiM,WahlT,KroeningD (2009) Symbolic counter abstraction for concurrent software.

In: CAV. LNCS, vol 5643, pp 64–78
5. BiereA (2013) Lingeling, Plingeling and Treengeling entering the SAT competition 2013. In: Proceedings

of SAT competition 2013; Solver and p. 51
6. Biere A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In: TACAS.

LNCS, vol 1579, pp 193–207
7. Bloem R, Jacobs S, Khalimov A, Konnov I, Rubin S, Veith H, Widder J (2015) Decidability of parame-

terized verification, synthesis lectures on distributed computing theory. Morgan & Claypool, San Rafael
8. Bokor P, Kinder J, Serafini M, Suri N (2011) Efficient model checking of fault-tolerant distributed pro-

tocols. In: DSN, pp 73–84
9. Bracha G, Toueg S (1985) Asynchronous consensus and broadcast protocols. J ACM 32(4):824–840

10. Brasileiro FV, Greve F, Mostéfaoui A, Raynal M (2001) Consensus in one communication step. In: PaCT.
LNCS, vol 2127, pp 42–50

11. Cavada R, Cimatti A, Dorigatti M, Griggio A, Mariotti A, Micheli A, Mover S, Roveri M, Tonetta S
(2014) The nuXmv symbolic model checker. In: CAV. LNCS, vol 8559, pp 334–342

12. Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM
43(2):225–267

13. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for
symbolic model checking. J ACM 50(5):752–794

14. Clarke E, Talupur M, Touili T, Veith H (2004) Verification by network decomposition. In: CONCUR
2004, vol 3170, pp 276–291

15. Clarke E, Talupur M, Veith H (2008) Proving Ptolemy right: the environment abstraction framework for
model checking concurrent systems. In: TACAS’08/ETAPS’08. Springer, Berlin, pp 33–47

16. Clarke EM, Kroening D, Ouaknine J, Strichman O (2004) Completeness and complexity of bounded
model checking. In: VMCAI. LNCS, vol 2937, pp 85–96

17. De Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Tools and algorithms for the construction
and analysis of systems. LNCS, vol 1579, pp 337–340

123

147

306 Form Methods Syst Des (2017) 51:270–307

18. Dobre D, Suri N (2006) One-step consensus with zero-degradation. In: DSN, pp 137–146
19. Drăgoi C, Henzinger TA, Zufferey D (2016) PSync: a partially synchronous language for fault-tolerant

distributed algorithms. In: POPL, pp 400–415
20. Drăgoi C, Henzinger TA, Veith H, Widder J, Zufferey D (2014) A logic-based framework for verifying

consensus algorithms. In: VMCAI. LNCS, vol 8318, pp 161–181
21. Emerson E, Namjoshi K (1995) Reasoning about rings. In: POPL, pp 85–94
22. Emerson EA, Kahlon V (2003) Model checking guarded protocols. In: LICS. IEEE, pp 361–370
23. Esparza J, Ganty P, Majumdar R (2013) Parameterized verification of asynchronous shared-memory

systems. In: CAV, pp 124–140
24. Farzan A, Kincaid Z, Podelski A (2013) Inductive data flow graphs. In: POPL, pp 129–142
25. Farzan A, Kincaid Z, Podelski A (2015) Proof spaces for unbounded parallelism. In: POPL, pp 407–420
26. FischerMJ, LynchNA, PatersonMS (1985) Impossibility of distributed consensuswith one faulty process.

J ACM 32(2):374–382
27. Gmeiner A, Konnov I, Schmid U, Veith H, Widder J (2014) Tutorial on parameterized model checking

of fault-tolerant distributed algorithms. In: SFM. LNCS, vol 8483. Springer, Berlin, pp 122–171
28. Godefroid P (1990) Using partial orders to improve automatic verification methods. In: CAV. LNCS, vol

531, pp 176–185
29. Guerraoui R (2002) Non-blocking atomic commit in asynchronous distributed systems with failure detec-

tors. Distrib Comput 15(1):17–25
30. https://github.com/konnov/fault-tolerant-benchmarks/tree/master/fmsd17
31. Hawblitzel C, Howell J, Kapritsos M, Lorch JR, Parno B, Roberts ML, Setty STV, Zill B (2015) Ironfleet:

proving practical distributed systems correct. In: SOSP, pp 1–17
32. Jensen H, Lynch N (1998) A proof of Burns n-process mutual exclusion algorithm using abstraction. In:

Steffen B (ed) TACAS. LNCS, vol 1384. Springer, Berlin, pp 409–423
33. John A, Konnov I, Schmid U, Veith H, Widder J (2013) Parameterized model checking of fault-tolerant

distributed algorithms by abstraction. In: FMCAD, pp 201–209
34. John A, Konnov I, Schmid U, Veith H, Widder J (2013) Towards modeling and model checking fault-

tolerant distributed algorithms. In: SPIN. LNCS, vol 7976, pp 209–226
35. KaiserA,KroeningD,Wahl T (2012) Efficient coverability analysis by proofminimization. In: CONCUR,

pp 500–515
36. Kesten Y, Pnueli A (2000) Control and data abstraction: the cornerstones of practical formal verification.

STTT 2:328–342
37. Konnov I, Lazić M, Veith H, Widder J (2017) A short counterexample property for safety and liveness

verification of fault-tolerant distributed algorithms. In: POPL, pp 719–734
38. Konnov I, Veith H,Widder J (2014) On the completeness of bounded model checking for threshold-based

distributed algorithms: reachability. In: CONCUR. LNCS, vol 8704, pp 125–140
39. Konnov I,VeithH,Widder J (2015)SMTandPORbeat counter abstraction: parameterizedmodel checking

of threshold-based distributed algorithms. In: CAV (Part I). LNCS, vol 9206, pp 85–102
40. Konnov I, Veith H, Widder J (2016) What you always wanted to know about model checking of fault-

tolerant distributed algorithms. In: PSI 2015, revised selected papers. LNCS, vol 9609. Springer, pp
6–21

41. Konnov I, Veith H,Widder J (2017) On the completeness of bounded model checking for threshold-based
distributed algorithms: reachability. Inf Comput 252:95–109

42. Kroening D, Strichman O (2003) Efficient computation of recurrence diameters. In: VMCAI. LNCS, vol
2575, pp 298–309

43. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM
21(7):558–565

44. Lamport L (2002) Specifying systems: the TLA+ language and tools for hardware and software engineers.
Addison-Wesley Longman Publishing Co. Inc, Boston

45. Leroux J, Sutre G (2004) On flatness for 2-dimensional vector addition systems with states. In: CONCUR
2004-concurrency theory. Springer, pp 402–416

46. Leroux J, Sutre G (2005) Flat counter automata almost everywhere! In: ATVA. LNCS, vol 3707, pp
489–503

47. Lesani M, Bell CJ, Chlipala A (2016) Chapar: certified causally consistent distributed key-value stores.
In: POPL, pp 357–370

48. Lipton RJ (1975) Reduction: a method of proving properties of parallel programs. Commun ACM
18(12):717–721

49. Lubachevsky BD (1984) An approach to automating the verification of compact parallel coordination
programs. I. Acta Inform 21(2):125–169

50. Lynch N (1996) Distributed algorithms. Morgan Kaufman, Burlington

123

148

Form Methods Syst Des (2017) 51:270–307 307

51. Mostéfaoui A, Mourgaya E, Parvédy PR, Raynal M (2003) Evaluating the condition-based approach to
solve consensus. In: DSN, pp 541–550

52. Padon O, McMillan KL, Panda A, Sagiv M, Shoham S (2016) Ivy: safety verification by interactive
generalization. In: PLDI, pp 614–630

53. Peled D (1993) All from one, one for all: on model checking using representatives. In: CAV. LNCS, vol
697, pp 409–423

54. Peluso S, Turcu A, Palmieri R, Losa G, Ravindran B (2016) Making fast consensus generally faster. In:
DSN, pp 156–167

55. Pnueli A, Xu J, Zuck L (2002) Liveness with (0,1,∞)-counter abstraction. In: CAV. LNCS, vol 2404, pp
93–111

56. Raynal M (1997) A case study of agreement problems in distributed systems: non-blocking atomic
commitment. In: HASE, pp 209–214

57. Song YJ, van Renesse R (2008) Bosco: one-step Byzantine asynchronous consensus. In: DISC. LNCS,
vol 5218, pp 438–450

58. Srikanth T, Toueg S (1987) Simulating authenticated broadcasts to derive simple fault-tolerant algorithms.
Distrib Comput 2:80–94

59. Valmari A (1991) Stubborn sets for reduced state space generation. In: Advances in Petri Nets 1990.
LNCS, vol 483. Springer, pp 491–515

60. Wilcox JR,WoosD, Panchekha P, Tatlock Z,WangX, ErnstMD,Anderson TE (2015) Verdi: a framework
for implementing and formally verifying distributed systems. In: PLDI, pp 357–368

123

149

150

Chapter 6

A short counterexample property for safety

and liveness verification of fault-tolerant dis-

tributed algorithms

Igor Konnov, Marijana Lazić, Helmut Veith, Josef Widder. A short coun-
terexample property for safety and liveness verification of fault-tolerant
distributed algorithms. ACM POPL, pp. 719–734, 2017.

url: http://dl.acm.org/citation.cfm?id=3009860

151

http://dl.acm.org/citation.cfm?id=3009860

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

A Short Counterexample Property for Safety and Liveness
Verification of Fault-Tolerant Distributed Algorithms

Igor Konnov Marijana Lazić Helmut Veith ∗ Josef Widder
TU Wien, Austria

{konnov, lazic, veith, widder}@forsyte.at

Abstract
Distributed algorithms have many mission-critical applications
ranging from embedded systems and replicated databases to cloud
computing. Due to asynchronous communication, process faults, or
network failures, these algorithms are difficult to design and verify.
Many algorithms achieve fault tolerance by using threshold guards
that, for instance, ensure that a process waits until it has received
an acknowledgment from a majority of its peers. Consequently,
domain-specific languages for fault-tolerant distributed systems
offer language support for threshold guards.

We introduce an automated method for model checking of safety
and liveness of threshold-guarded distributed algorithms in systems
where the number of processes and the fraction of faulty processes
are parameters. Our method is based on a short counterexample
property: if a distributed algorithm violates a temporal specification
(in a fragment of LTL), then there is a counterexample whose
length is bounded and independent of the parameters. We prove
this property by (i) characterizing executions depending on the
structure of the temporal formula, and (ii) using commutativity of
transitions to accelerate and shorten executions. We extended the
ByMC toolset (Byzantine Model Checker) with our technique, and
verified liveness and safety of 10 prominent fault-tolerant distributed
algorithms, most of which were out of reach for existing techniques.

Categories and Subject Descriptors F.3.1 [Logic and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.4.5 [Software]: Operating systems: Fault-tolerance, Veri-
fication

Keywords Parameterized model checking, Byzantine faults, fault-
tolerant distributed algorithms, reliable broadcast

∗We dedicate this article to the memory of Helmut Veith, who passed away
tragically after we finished the first draft together. In addition to contributing
to this work, Helmut initiated our long-term research program on verification
of fault-tolerant distributed algorithms, which made this paper possible.
Supported by: the Austrian Science Fund (FWF) through the National
Research Network RiSE (S11403 and S11405), project PRAVDA (P27722),
and Doctoral College LogiCS (W1255-N23); and by the Vienna Science and
Technology Fund (WWTF) through project APALACHE (ICT15-103).

1. Introduction
Distributed algorithms have many applications in avionic and
automotive embedded systems, computer networks, and the internet
of things. The central idea is to achieve dependability by replication,
and to ensure that all correct replicas behave as one, even if
some of the replicas fail. In this way, the correct operation of the
system is more reliable than the correct operation of its parts. Fault-
tolerant algorithms typically have been used in applications where
highest reliability is required because human life is at risk (e.g.,
automotive or avionic industries), and even unlikely failures of
the system are not acceptable. In contrast, in more mainstream
applications like replicated databases, human intervention to restart
the system from a checkpoint was often considered to be acceptable,
so that expensive fault tolerance mechanisms were not used in
conventional applications. However, new application domains such
as cloud computing provide a new motivation to study fault-tolerant
algorithms: with the huge number of computers involved, faults
are the norm [53] rather than an exception, so that fault tolerance
becomes an economic necessity; and so does the correctness of
fault tolerance mechanisms. Hence, design, implementation, and
verification of distributed systems constitutes an active research
area [7, 23, 41, 42, 48, 57, 67]. Although distributed algorithms
show complex behavior, and are difficult to understand for human
engineers, there is only very limited tool support to catch logical
errors in fault-tolerant distributed algorithms at design time.

The state of the art in the design of fault-tolerant systems is exem-
plified by the recent work on Paxos-like distributed algorithms like
Raft [54] or M2PAXOS [57]. The designers encode these algorithms
in TLA+ [65], and use the TLC model checker to automatically find
bugs in small instances, i.e., in distributed systems containing, e.g.,
three processes. Large distributed systems (e.g., clouds) need guar-
antees for all numbers of processes. These guarantees are typically
given using hand-written mathematical proofs. In principle, these
proofs could be encoded and machine-checked using the TLAPS
proof system [16], PVS [49], Isabelle [15], Coq [48], Nuprl [60],
or similar systems; but this requires human expertise in the proof
checkers and in the application domain, and a lot of effort.

Ensuring correctness of the implementation is an open challenge:
As the implementations are done by hand [54, 57], the connection be-
tween the specification and the implementation is informal, such that
there is no formal argument about the correctness of the implemen-
tation. To address the discrepancy between design, implementation,
and verification, Drăgoi et al. [23] introduced a domain-specific
language PSync which is used for two purposes: (i) it compiles
into running code, and (ii) it is used for verification. Their verifica-
tion approach [24], requires a developer to provide invariants, and
similar verification conditions. While this approach requires less
human intervention than writing machine-checkable proofs, com-
ing up with invariants of distributed systems requires considerable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

POPL’17, January 15–21, 2017, Paris, France
ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009860

719

152

1 case c l a s s EchoMsg extends Message
2

3 c l a s s Re l i a b l eB roadca s tOnce
4 extends DSLProtocol {
5 va l n = ALL . s i z e / / n r . p r o c e s s e s
6 va l t = ALL . s i z e / 3 − 1 / / max . f a u l t s
7 var accep t : Boolean = Fa l se
8

9 UPON RECEIVING START WITH v DO {
10 IF v == 1 THEN / / c h e c k t h e i n i t i a l v a l u e
11 SEND EchoMsg TO ALL
12 }
13 UPON RECEIVING EchoMsg TIMES t + 1 DO {
14 SEND EchoMsg TO ALL / / >= 1 c o r r e c t
15 }
16 UPON RECEIVING EchoMsg TIMES n − t DO {
17 accep t = True / / a l m o s t a l l c o r r e c t
18 }
19 }

Figure 1. Code example of a distributed algorithm in DISTAL [7].
A distributed system consists of n processes, at most t < n/3 of
which are Byzantine faulty. The correct ones execute the code, and
no assumptions is made about the faulty processes.

human ingenuity. The Mace [41] framework is based on a similar
idea, and is an extension to C++. While being fully automatic, their
approach to correctness is light-weight in that it uses a tool that
explores random walks to find (not necessarily all) bugs, rather than
actually verifying systems.

In this paper we focus on automatic verification methods for
programming constructs that are typical for fault-tolerant distributed
algorithms. Figure 1 is an example of a distributed algorithm in
the domain-specific language DISTAL [7]. It encodes the core
of the reliable broadcast protocol from [64], which is used as
building block of many fault-tolerant distributed systems. Line 13
and Line 16 use so-called “threshold guards” that check whether
a given number of messages from distinct senders arrived at the
receiver. As threshold guards are the central algorithmic idea for
fault tolerance, domain-specific languages such as DISTAL or PSync
have constructs for them (see [23] for an overview of domain-
specific languages and formalization frameworks for distributed
systems). For instance, the code in Figure 1 works for systems with
n processes among which t can fail, with t < n/3 as required
for Byzantine fault tolerance [56]. In such systems, waiting for
messages from n− t processes ensures that if all correct processes
send messages, then faulty processes cannot prevent progress.
Similarly, waiting for t + 1 messages ensures that at least one
message was sent by a correct process. Konnov et al. [42] introduced
an automatic method to verify safety of algorithms with threshold
guards. Their method is parameterized in that it verifies distributed
algorithms for all values of parameters (n and t) that satisfy a
resilience condition (t < n/3). This work bares similarities to the
classic work on reduction for parallel programs by Lipton [50].
Lipton proves statements like “all P operations on a semaphore are
left movers with respect to operations on other processes.” He proves
that given a run that ends in a given state, the same state is reached
by the run in which the P operation has been moved. Konnov et
al. [42] do a similar analysis for threshold-guarded operations, in
which they analyze the relation between statements from Figure 1
like “send EchoMsg” and “UPON RECEIVING EchoMsg TIMES
t + 1” in order to determine which statements are movable. From
this, they develop an offline partial order reduction that together
with acceleration [6, 44] reduced reachability checking to complete
bounded model checking using SMT. In this way, they automatically
check safety of fault-tolerant algorithms.

However, for fault-tolerant distributed algorithms liveness is as
important as safety: This comes from the celebrated impossibility
result by Fischer, Lynch, and Paterson [32] that states that a fault-
tolerant consensus algorithm cannot ensure both safety and liveness
in asynchronous systems. It is folklore that designing a safe fault-
tolerant distributed algorithm is trivial: just do nothing; e.g., by never
committing transactions, one cannot commit them in inconsistent
order. Hence, a technique that verifies only safety may establish
the “correctness” of a distributed algorithm that never does anything
useful. To achieve trust in correctness of a distributed algorithm, we
need tools that verify both safety and liveness.

As exemplified by [31], liveness verification of parameterized
distributed and concurrent systems is still a research challenge.
Classic work on parameterized model checking by German and
Sistla [35] has several restrictions on the specifications (∀i. φ(i)) and
the computational model (rendezvous), which are incompatible with
fault-tolerant distributed algorithms. In fact, none of the approaches
(e.g., [18, 26, 27, 59]) surveyed in [9] apply to the algorithms we
consider. More generally, in the parameterized case, going from
safety to liveness is not straightforward. There are systems where
safety is decidable and liveness is not [28].

Contributions. We generalize the approach by Konnov et al. [42,
44] to liveness by presenting a framework and a model checking
tool that takes as input a description of a distributed algorithm (in
our variant [36] of Promela [39]) and specifications in a fragment
of linear temporal logic. It then shows correctness for all parameter
values (e.g., n and t) that satisfy the required resilience condition
(e.g., t < n/3), or reports a counterexample:
1. As in the classic result by Vardi and Wolper [66], we observe

that it is sufficient to search for counterexamples that have the
form of a lasso, i.e., after a finite prefix an infinite loop is entered.
Based on this, we analyze specifications automatically, in order
to enumerate possible shapes of lassos depending on temporal
operators F and G and evaluations of threshold guards.

2. We automatically do offline partial order reduction using the
algorithm’s description. For this, we introduce a more refined
mover analysis for threshold guards and temporal properties. We
extend Lipton’s reduction method [50] (re-used and extended
by many others [19, 22, 25, 34, 44, 47]), so that we maintain
invariants, which allows us to go beyond reachability and verify
specifications with the temporal operators F and G .

3. By combining acceleration [6, 44] with Points 1 and 2, we obtain
a short counterexample property, that is, that infinite executions
(which may potentially be counterexamples) have ”equivalent”
representatives of bounded length. The bound depends on the
process code and is independent of the parameters. The equiva-
lence is understood in terms of temporal logic specifications that
are satisfied by the original executions and the representatives,
respectively. We show that the length of the representatives in-
creases mildly compared to reachability checking in [42]. This
implies a so-called completeness threshold [46] for threshold-
based algorithms and our fragment of LTL.

4. Consequently, we only have to check a reasonable number of
SMT queries that encode parameterized and bounded-length
representatives of executions. We show that if the parameterized
system violates a temporal property, then SMT reports a coun-
terexample for one of the queries. We prove that otherwise the
specification holds for all system sizes.

5. Our theoretical results and our implementation push the bound-
ary of liveness verification for fault-tolerant distributed algo-
rithms. While prior results [40] scale just to two out of ten
benchmarks from [42], we verified safety and liveness of all ten.
These benchmarks originate from distributed algorithms [11, 12,
14, 21, 37, 52, 61, 63, 64] that constitute the core of important
services such as replicated state machines.

720

153

`0

`1

`2 `3

r2 : γ1 7→ x++

r1 : tru
e 7→ x++

r3 : γ2 7→ x++

r4 : γ2

r5 : γ2 7→ x++

r6 r7
r8

Figure 2. The threshold automaton corresponding to Figure 1 with
γ1 : x ≥ (t + 1) − f and γ2 : x ≥ (n − t) − f over parameters
n, t, and f , representing the number of processes, the upper bound
on the faulty processes (used in the code), and the actual number
of faulty processes. The negative number −f in the threshold is
used to model the environment, and captures that at most f of the
received messages may have been sent by faulty processes.

From a theoretical viewpoint, we introduce new concepts and
conduct extensive proofs (the proofs can be found in [43]) for
Points 1 and 2. From a practical viewpoint, we have built a com-
plete framework for model checking of fault-tolerant distributed
algorithms that use threshold guards, which constitute the central
programming paradigm for dependable distributed systems.

2. Representation of Distributed Algorithms
2.1 Threshold Automata
As internal representation in our tool, and in the theoretical work
of this paper, we use threshold automata (TA) defined in [44]. The
TA that corresponds to the DISTAL code from Figure 1 is given in
Figure 2. The threshold automaton represents the local control flow
of a single process, where arrows represent local transitions that are
labeled with ϕ 7→ act: Expression ϕ is a threshold guard and the
action act may increment a shared variable.

Example 2.1. The TA from Figure 2 is quite similar to the code
in Figure 1: if START is called with v = 1 this corresponds to the
initial local state `1, while otherwise a process starts in `0. Initially
a process has not sent any messages. The local state `2 in Figure 2
captures that the process has sent EchoMsg and accept evaluates
to false, while `3 captures that the process has sent EchoMsg
and accept evaluates to true. The syntax of Figure 1, although
checking how many messages of some type are received, hides
bookkeeping details and the environment, e.g., message buffers. For
our verification technique, we need to make such issues explicit:
The shared variable x stores the number of correct processes that
have sent EchoMsg. Incrementing x models that EchoMsg is sent
when the transition is taken. Then, execution of Line 9 corresponds
to the transition r1. Executing Line 13 is captured by r2: the check
whether t+ 1 messages are received is captured by the fact that r2

has the guard γ1, that is, x ≥ (t + 1) − f . Intuitively, this guard
checks whether sufficiently many processes have sent EchoMsg (i.e.,
increased x), and takes into account that at most f messages may
have been sent by faulty processes. Namely, if we observe the guard
in the equivalent form x+f ≥ t+1, then we notice that it evaluates
to true when the total number of received EchoMsg messages from
correct processes (x) and potentially received messages from faulty
processes (at most f), is at least t + 1, which corresponds to the
guard of Line 13. Transition r4 corresponds to Line 16, r3 captures
that Line 9 and Line 16 are performed in one protocol step, and r5

captures Line 13 and Line 16. /

While the example shows that the code in a domain-specific
language and a TA are quite close, it should be noted that in reality,
things are slightly more involved. For instance, the DISTAL runtime
takes care of the bookkeeping of sent and received messages (waiting

queues at different network layers, buffers, etc.), and just triggers
the high-level protocol when a threshold guard evaluates to true.
This typically requires counting the number of received messages.
While these local counters are present in the implementation, they
are abstracted in the TA. For the purpose of this paper we do not
need to get into the details. Discussions on data abstraction and
automated generation of TAs from code similar to DISTAL can be
found in [45].

We recall the necessary definitions introduced in [44]. A thresh-
old automaton is a tuple TA = (L, I,Γ,Π,R,RC) whose compo-
nents are defined as follows: The local states and the initial states
are in the finite sets L and I ⊆ L, respectively. For simplicity, we
identify local states with natural numbers, i.e., L = {1, . . . , |L|}.
Shared variables and parameter variables range over N0 and are
in the finte sets Γ and Π, respectively. The resilience condition RC
is a formula over parameter variables in linear integer arithmetic,
and the admissible parameters are PRC = {p ∈ N|Π|0 : p |= RC}.
After an example for resilience conditions, we will conclude the
definition of a threshold automaton by definingR as the finite set
of rules.

Example 2.2. The admissible parameters and resilience conditions
are motivated by fault-tolerant distributed algorithms: Let n be the
number of processes, t be the assumed number of faulty processes,
and in a run, f be the actual number of faults. For these parameters,
the famous result by Pease, Shostak and Lamport [56] states that
agreement can be solved iff the resilience condition n > 3t ∧ t ≥
f ≥ 0 is satisfied. Given such constraints, the set PRC is infinite,
and in Section 2.2 we will see that this results in an infinite state
system. /

A rule is a tuple (from, to, ϕ≤, ϕ>,u), where from and to are
from L, and capture from which local state to which a process
moves via that rule. A rule can only be executed if ϕ≤ and ϕ>

are true; both are conjunction of guards. Each guard consists of a
shared variable x ∈ Γ, coefficients a0, . . . , a|Π| ∈ Z, and parameter
variables p1, . . . , p|Π| ∈ Π so that x ≥ a0 +

∑|Π|
i=1 ai ·pi is a lower

guard and x < a0 +
∑|Π|
i=1 ai ·pi is an upper guard. Then, Φrise and

Φfall are the sets of lower and upper guards.1 Rules may increase
shared variables using an update vector u ∈ N|Γ|0 that is added to
the vector of shared variables. Finally,R is the finite set of rules.

Example 2.3. A rule corresponds to an edge in Figure 2. The pair
(from, to) encodes the edge while (ϕ≤, ϕ>,u) encodes the edge
label. For example, rule r2 would be (`0, `2, γ1,>, 1). Thus, a rule
corresponds to a (guarded) statement from Figure 1 (or combined
statements as discussed in Example 2.1). /

The above definition of TAs is quite general. It allows loops,
increase of shared variables in loops, etc. As has been observed
in [44], if one does not restrict increases on shared variables, the
resulting systems may produce runs that visit infinitely many states,
and there is little hope for a complete verification method. Hence,
Konnov et al. [42] analyzed the TAs of the benchmarks [11, 12,
14, 21, 37, 52, 61, 63, 64]: They observed that some states have
self-loops (corresponding to busy-waiting for messages to arrive)
and in the case of failure detector based algorithms [61] there are
loops that consist of at most two rules. None of the rules in loops
increase shared variables. In our theory, we allow more general TAs
than actually found in the benchmarks. In more detail, we make the
following assumption:

1 Compared to [42], we use the more intuitive notation of Φrise and Φfall:
lower guards can only change from false to true (rising), while upper guards
can only change from true to false (falling); cf. Proposition 5.1.

721

154

Threshold automata for fault-tolerant distributed algorithms.
As in [44], we assume that if a rule r is in a loop, then r.u = 0. In
addition, we use the restriction that all the cycles of a TA are simple,
i.e., between any two locations in a cycle there exists exactly one
node-disjoint directed path (nodes in cycles may have self-loops).
We conjecture that this restriction can be relaxed as in [42], but this
is orthogonal to our work.

Example 2.4. In the TA from Figure 2 we use the shared variable x
as the number of correct processes that have sent a message. One
easily observes that the rules that update x do not belong to loops.
Indeed, all the benchmarks [11, 12, 14, 21, 37, 52, 61, 63, 64] share
this structure. This is because at the algorithmic level, all these
algorithms are based on the reliable communication assumption
(no message loss and no spurious message generation/duplication),
and not much is gained by resending the same message. In these
algorithms a process checks whether sufficiently many processes
(e.g., a majority) have sent a message to signal that they are in some
specific local state. Consequently, a receiver would ignore duplicate
messages from the same sender. In our analysis we exploit this
characteristic of distributed algorithms with threshold guards, and
make the corresponding assumption that processes do not send (i.e.,
increase x) from within a loop. Similarly, as a process cannot make
the sending of a message undone, we assume that shared variables
are never decreased. So, while we need these assumptions to derive
our results, they are justified by our application domain. /

2.2 Counter Systems
A threshold automaton models a single process. Now the question
arises how we define the composition of multiple processes that will
result in a distributed system. Classically, this is done by parallel
composition and interleaving semantics: A state of a distributed
system that consists of n processes is modeled as n-dimensional
vector of local states. The transition to a successor state is then
defined by non-deterministically picking a process, say i, and chang-
ing the ith component of the n-dimensional vector according to the
local transition relation of the process. However, for our domain
of threshold-guarded algorithms, we do not care about the precise
n-dimensional vector so that we use a more efficient encoding: It is
well-known that the system state of specific distributed or concur-
rent systems can be represented as a counter system [2, 44, 51, 59]:
instead of recording for some local state `, which processes are in `,
we are only interested in how many processes are in `. In this way,
we can efficiently encode transition systems in SMT with linear
integer arithmetics. Therefore, we formalize the semantics of the
threshold automata by counter systems.

Fix a threshold automaton TA, a function (expressible as linear
combination of parameters) N : PRC → N0 that determines the
number of modeled processes, and admissible parameter values p ∈
PRC . A counter system Sys(TA) is defined as a transition system
(Σ, I, R), with configurations Σ and I and transition relation R
defined below.

Definition 2.5. A configuration σ = (κ,g,p) consists of a vector
of counter values σ.κ ∈ N|L|0 , a vector of shared variable values
σ.g ∈ N|Γ|0 , and a vector of parameter values σ.p = p. The
set Σ contains all configurations. The initial configurations are
in set I , and each initial configuration σ satisfies σ.g = 0,∑
i∈I σ.κ[i] = N(p), and

∑
i 6∈I σ.κ[i] = 0.

Example 2.6. The safety property from Example 2.2, refers to an
initial configuration that satisfies resilience condition n > 3t ∧ t ≥
f ≥ 0, e.g., 4 > 3 · 1∧ 1 ≥ 0 ≥ 0 such that σ.p = (4, 1, 0). In our
encodings we typically have N is the function (n, t, f) 7→ n− f .
Further, σ.κ[`0] = N(p) = n − f = 4 and σ.κ[`i] = 0, for
`i ∈ L \ {`0}, and the shared variable σ.g = 0. /

A transition is a pair t = (rule, factor) of a rule and a
non-negative integer called the acceleration factor. For t =
(rule, factor) we write t.u for rule.u, etc. A transition t is unlocked
in σ if ∀k ∈ {0, . . . , t.factor − 1}. (σ.κ, σ.g + k · t.u, σ.p) |=
t.ϕ≤ ∧ t.ϕ>. A transition t is applicable (or enabled) in σ, if it is
unlocked, and σ.κ[t.from] ≥ t.factor , or t.factor = 0.

Example 2.7. This notion of applicability contains acceleration
and is central for our approach. Intuitively, the value of the factor
corresponds to how many times the rule is executed by different
processes. In this way, we can subsume steps by an arbitrary
number of processes into one transition. Consider Figure 2. If for
some k, k processes are in location `1, then in classic modeling it
takes k transitions to move these processes one-by-one to `2. With
acceleration, however, these k processes can be moved to `2 in
one step, independently of k. In this way, the bounds we compute
will be independent of the parameter values. However, assuming x
to be a shared variable and f being a parameter that captures the
number of faults, our (crash-tolerant) benchmarks include rules like
“x < f 7→ x++” for local transition to a special “crashed” state.
The above definition ensures that at most f − x of these transitions
are accelerated into one transition (whose factor thus is at most
f − x). This precise treatment of threshold guards is crucial for
fault-tolerant distributed algorithms. The central contribution of this
paper is to show how acceleration can be used to shorten schedules
while maintaining specific temporal logic properties. /

Definition 2.8. The configuration σ′ is the result of applying the
enabled transition t to σ, if
1. σ′.g = σ.g + t.factor · t.u
2. σ′.p = σ.p
3. if t.from 6= t.to then σ′.κ[t.from] = σ.κ[t.from]− t.factor ,
σ′.κ[t.to] = σ.κ[t.to] + t.factor , and
∀` ∈ L \ {t.from, t.to}. σ′.κ[`] = σ.κ[`].

4. if t.from = t.to then σ′.κ = σ.κ.
In this case we use the notation σ′ = t(σ).

Example 2.9. Let us again consider Figure 2 with n = 4, t = 1,
and f = 1. We consider the initial configuration where σ.κ[`1] =
n − f = 3 and σ.κ[`i] = 0, for `i ∈ L \ {`0}. The guard
of rule r5, γ2 : x ≥ (n − t) − f = 2, initially evaluates to
false because x = 0. The guard of rule r1 is true, so that any
transition (r1, factor) is unlocked. As σ.κ[`1] = 3, all transitions
(r1, factor), for 0 ≤ factor ≤ 3 are applicable. If the transition
(r1, 2) is applied to the initial configuration, we obtain that x = 2 so
that, after the application, γ2 evaluates to true. Then r5 is unlocked
and the transitions (r5, 1) and (r5, 0) are applicable as σ.κ[`1] = 1.
Since γ2 checks for greater or equal, once it becomes true it remains
true. Such monotonic behavior is given for all guards, as has already
been observed in [44, Proposition 7], and is a crucial property. /

The transition relation R is defined as follows: Transition (σ, σ′)
belongs to R iff there is a rule r ∈ R and a factor k ∈ N0 such that
σ′ = t(σ) for t = (r, k). A schedule is a sequence of transitions. For
a schedule τ and an index i : 1 ≤ i ≤ |τ |, by τ [i] we denote the ith
transition of τ , and by τ i we denote the prefix τ [1], . . . , τ [i] of τ . A
schedule τ = t1, . . . , tm is applicable to configuration σ0, if there
is a sequence of configurations σ1, . . . , σm with σi = ti(σi−1)
for 1 ≤ i ≤ m. A schedule t1, . . . , tm where ti.factor = 1 for
0 < i ≤ m is called conventional. If there is a ti.factor > 1, then
a schedule is accelerated. By τ · τ ′ we denote the concatenation of
two schedules τ and τ ′.

We will reason about schedules in Section 6 for our mover
analysis, which is naturally expressed by swapping neighboring
transitions in a schedule. To reason about temporal logic properties,
we need to reason about the configurations that are “visited” by a
schedule. For that we now introduce paths.

722

155

A finite or infinite sequence σ0, t1, σ1, . . . , tk−1, σk−1, tk, . . .
of alternating configurations and transitions is called a path, if for
every transition ti, i ∈ N, in the sequence, holds that ti is en-
abled in σi−1, and σi = ti(σi−1). For a configuration σ0 and
a finite schedule τ applicable to σ0, by path(σ0, τ) we denote
σ0, t1, σ1, . . . , t|τ |, σ|τ | with σi = ti(σi−1), for 1 ≤ i ≤ |τ |. Sim-
ilarly, if τ is an infinite schedule applicable to σ0, then path(σ0, τ)
represents an infinite sequence σ0, t1, σ1, . . . , tk−1, σk−1, tk, . . .
where σi = ti(σi−1), for all i > 0.

The evaluation of the threshold guards solely defines whether
certain rules are unlocked. As was discussed in Example 2.9, along
a path, the evaluations of guards are monotonic. The set of upper
guards that evaluate to false and lower guards that evaluate to true —
called the context — changes only finitely many times. A schedule
can thus be understood as an alternating sequence of schedules
without context change, and context-changing transitions. We will
recall the definitions of context etc. from [42] in Section 5. We
say that a schedule τ is steady for a configuration σ, if every
configuration of path(σ, τ) has the same context.

Due to the resilience conditions and admissible parameters,
our counter systems are in general infinite state. The following
proposition establishes an important property for verification.

Proposition 2.10. Every (finite or infinite) path visits finitely many
configurations.

Proof. By Definition 2.8(3), if a transition t is applied to a configu-
ration σ, then the sum of the counters remains unchanged, that is,∑
`∈L σ.κ[`] =

∑
`∈L t(σ).κ[`]. By repeating this argument, the

sum of the counters remains stable in a path. By Definition 2.8(2)
the parameter values also remain stable in a path.

By Definition 2.8(1), it remains to show that in each path
eventually the shared variable g stop increasing. Let us fix a rule
r = (from, to, ϕ≤, ϕ>,u) that increases g. By the definition of a
transition, applying some transition (r, factor) decreases κ[r.from]
by factor . As by assumption on TAs, r is not in a cycle, κ[r.from] is
increased only finitely often, namely, at most N(p) times. As there
are only finitely many rules in a TA, the proposition follows.

3. Verification Problems: Parameterized
Reachability vs. Safety & Liveness.

In this section we will discuss the verification problems for fault-
tolerant distributed algorithms. A central challenge is to handle
resilience conditions precisely.

Example 3.1. The safety property (unforgeability) of [64] ex-
pressed in terms of Figure 2 means that no process should ever
enter `3 if initially all processes are in `0, given that n > 3t ∧ t ≥
f ≥ 0. We can express this in the counter system: under the re-
silience condition n > 3t ∧ t ≥ f ≥ 0, given an initial con-
figuration σ, with σ.κ[`0] = n − f , to verify safety, we have to
establish the absence of a schedule τ that satisfies σ′ = τ(σ) and
σ′.κ[`3] > 0.

In order to be able to answer this question, we have to deal with
these resilience conditions precisely: Observe that `3 is unreachable,
as all outgoing transitions from `0 contain guards that evaluate to
false initially, and since all processes are in `0 no process ever
increases x. A slight modification of t ≥ f to t + 1 ≥ f in the
resilience condition changes the result, i.e., one fault too many
breaks the system. For example, if n = 4, t = 1, and f = 2, then the
new resilience condition holds, but as the guard γ1 : x ≥ (t+1)−f
is now initially true, then one correct process can fire the rule r2

and increase x. Now when x = 1, the guard γ2 : x ≥ (n− t)− f
becomes true, so that the process can fire the rule r4 and reach the
state `3. This tells us that unforgeability is not satisfied in the system
where the resilience condition is n > 3t ∧ t+ 1 ≥ f ≥ 0. /

ψ ::= pform | Gψ | Fψ | ψ ∧ ψ
pform ::= cform | gform ∨ cform

cform ::=
∨

`∈Locs
κ[`] 6= 0 |

∧

`∈Locs
κ[`] = 0 | cform ∧ cform

gform ::= guard | ¬gform | gform ∧ gform

Table 1. The syntax of ELTLFT-formulas: pform defines proposi-
tional formulas, and ψ defines temporal formulas. We assume that
Locs ⊆ L and guard ∈ Φrise ∪ Φfall.

This is the verification question studied in [42], which can be
formalized as follows:

Definition 3.2 (Parameterized reachability). Given a threshold
automaton TA and a Boolean formula B over {κ[i] = 0 | i ∈ L},
check whether there are parameter values p ∈ PRC , an initial
configuration σ0 ∈ I with σ0.p = p and a finite schedule τ
applicable to σ0 such that τ(σ0) |= B.

As shown in [42], if such a schedule exists, then there is also a
schedule of bounded length. In this paper, we do not limit ourselves
to reachability, but consider specifications of counterexamples to
safety and liveness of FTDAs from the literature. We observe that
such specifications use a simple subset of linear temporal logic that
contains only the temporal operators F and G .

Example 3.3. Consider a liveness property from the distributed
algorithms literature called correctness [64]:

GFψfair → (κ[`0] = 0→ Fκ[`3] 6= 0). (1)

Formula ψfair expresses the reliable communication assumption
of distributed algorithms [32]. In this example, ψfair ≡ κ[`1] =
0∧(x ≥ t+1→ κ[`0] = 0∧κ[`1] = 0)∧(x ≥ n−t→ κ[`0] =
0 ∧ κ[`2] = 0). Intuitively, GFψfair means that all processes
in `1 should eventually leave this state, and if sufficiently many
messages of type x are sent (γ1 or γ2 holds true), then all processes
eventually receive them. If they do so, they have to eventually
fire rules r1, r2, r3, or r4 and thus leave locations `0, `1, and `2.
Our approach is based on possible shapes of counterexamples.
Therefore, we consider the negation of the specification (1), that is,
GFψfair ∧ κ[`0] = 0 ∧Gκ[`3] = 0. In the following we define the
logic that can express such counterexamples. /

The fragment of LTL limited to F and G was studied in [29, 46].
We further restrict it to the logic that we call Fault-Tolerant Temporal
Logic (ELTLFT), whose syntax is shown in Table 1. The formulas
derived from cform — called counter formulas — restrict counters,
while the formulas derived from gform — called guard formulas —
restrict shared variables. The formulas derived from pform are
propositional formulas. The temporal operators F and G follow
the standard semantics [5, 17], that is, for a configuration σ and an
infinite schedule τ , it holds that path(σ, τ) |= ϕ, if:
1. σ |= ϕ, when ϕ is a propositional formula,
2. ∃τ ′, τ ′′ : τ = τ ′ · τ ′′. path(τ ′(σ), τ ′′) |= ψ, when ϕ = Fψ,
3. ∀τ ′, τ ′′ : τ = τ ′ · τ ′′. path(τ ′(σ), τ ′′) |= ψ, when ϕ = Gψ.

To stress that the formula should be satisfied by at least one path,
we prepend ELTLFT-formulas with the existential path quantifier E .
We use the shorthand notation true for a valid propositional formula,
e.g.,

∧
i∈∅ κ[i] = 0. We also denote with ELTLFT the set of all

formulas that can be written using the logic ELTLFT.
We will reason about invariants of the finite subschedules, and

consider a propositional formula ψ. Given a configuration σ, a finite
schedule τ applicable to σ, and ψ, by Cfgs(σ, τ) |= ψ we denote

723

156

algorithm parameterized_model_checking(TA, ϕ): // see Def. 3.4
G := cut_graph (ϕ) /∗ Sect. 4 ∗/
H := threshold_graph(TA) /∗ Sect. 5 ∗/
for each ≺ in topological_orderings(G ∪H) do // e.g., using [13]
check_one_order(TA, ϕ, G, H, ≺) /∗ Sect. 6−7 ∗/
if SMT_sat() then report the SMT model as a counterexample

Figure 3. A high-level description of the verification algorithm. For
details of check_one_order, see Section 7.2 and Figure 10.

that ψ holds in every configuration σ′ visited by the path path(σ, τ).
In other words, for every prefix τ ′ of τ , we have that τ ′(σ) |= ψ.

Definition 3.4 (Parameterized unsafety & non-liveness). Given a
threshold automaton TA and an ELTLFT formula ψ, check whether
there are parameter values p ∈ PRC , an initial configuration
σ0 ∈ I with σ0.p = p, and an infinite schedule τ of Sys(TA)
applicable to σ0 such that path(σ0, τ) |= ψ.

Complete bounded model checking. We solve this problem by
showing how to reduce it to bounded model checking while guaran-
teeing completeness. To this end, we have to construct a bounded-
length encoding of infinite schedules. In more detail:
• We observe that if path(σ0, τ) |= ψ, then there is an initial

state σ and two finite schedules ϑ and ρ (of unknown length)
that can be used to construct an infinite (lasso-shaped) schedule
ϑ · ρω , such that path(σ, ϑ · ρω) |= ψ (Section 4.1).
• Now given ϑ and ρ, we prove that we can use a ψ-specific

reduction, to cut ϑ and ρ into subschedules ϑ1, . . . , ϑm and
ρ1, . . . , ρn, respectively so that the subschedules satisfy subfor-
mulas of ψ (Sections 4.2, 4.3 and 5).
• We use an offline partial order reduction, specific to the subfor-

mulas of ψ, and acceleration to construct representative sched-
ules rep[ϑi] and rep[ρj] that satisfy the required ELTLFT for-
mulas that are satisfied ϑi and ρj , respectively for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Moreover, rep[ϑi] and rep[ρj] are fixed se-
quences of rules, where bounds on the lengths of the sequences
are known (Section 6).
• These fixed sequence of rules can be used to encode a query

to the SMT solver (Section 7.1). We ask whether there is an
applicable schedule in the counter system that satisfies the
sequence of rules and ψ (Section 7.3). If the SMT solver reports
a contradiction, there exists no counterexample.
Based on these theoretical results, our tool implements the high-

level verification algorithm from Figure 3 (in the comments we give
the sections that are concerned with the respective step):

4. Shapes of Schedules that Satisfy ELTLFT
We characterize all possible shapes of lasso schedules that satisfy an
ELTLFT-formula ϕ. These shapes are characterized by so-called cut
points: We show that every lasso satisfying ϕ has a fixed number of
cut points, one cut point per a subformula ofϕ that starts with F . The
configuration in the cut point of a subformula Fψ must satisfy ψ,
and all configurations between two cut points must satisfy certain
propositional formulas, which are extracted from the subformulas
of ϕ that start with G . Our notion of a cut point is motivated by
extreme appearances of temporal operators [29].

Example 4.1. Consider the ELTLFT formula ϕ ≡ EF (a ∧ F d ∧
F e∧G b∧GF c), where a, . . . , e are propositional formulas, whose
structure is not of interest in this section. Formula ϕ is satisfiable by
certain paths that have lasso shapes, i.e., a path consists of a finite
prefix and a loop, which is repeated infinitely. These lassos may
differ in the actual occurrences of the propositions and the start of the
loop: For instance, at some point, a holds, and since then b always
holds, then d holds at some point, then e holds at some point, then

(a)
A B C D E F

b
a d e c

(b)
A BC D E F

b
a de c

(c)
A B CD E F

b
a d e c

(d)
ABCD E F

b
adec

(e)
A BCD E F

b
a de c

(and 15 more...)

Figure 4. The shapes of lassos that satisfy the formula EF (a ∧
F d∧F e∧G b∧GF c). The crosses show cut points for: (A) formula
F (a ∧ F d ∧ F e ∧ G b ∧ GF c), (B) formula F d, (C) formula F e,
(D) loop start, (E) formula F c, and (F) loop end.

the loop is entered, and c holds infinitely often inside the loop. This
is the case (a) shown in Figure 4, where the configurations in the cut
points A, B, C, and D must satisfy the propositional formulas a, d,
e, and c respectively, and the configurations between A and F must
satisfy the propositional formula b. This example does not restrict
the propositions between the initial state and the cut point A, so that
this lasso shape, for instance, also captures the path where b holds
from the beginning. There are 20 different lasso shapes for ϕ, five
of them are shown in the figure. We construct lasso shapes that are
sufficient for finding a path satisfying an ELTLFT formula. In this
example, it is sufficient to consider lasso shapes (a) and (b), since
the other shapes can be constructed from (a) and (b) by unrolling
the loop several times. /

4.1 Restricting Schedules to Lassos
In the seminal paper [66], Vardi and Wolper showed that if a
finite-state transition system M violates an LTL formula — which
requires all paths to satisfy the formula — then there is a path
in M that (i) violates the formula and (ii) has lasso shape. As our
logic ELTLFT specifies counterexamples to the properties of fault-
tolerant distributed algorithms, we are interested in this result in the
following form: if the transition system satisfies an ELTL formula —
which requires one path to satisfy the formula — then M has a path
that (i) satisfies the formula and (ii) has lasso shape.

As observed above, counter systems are infinite state. Conse-
quently, one cannot apply the results of [66] directly. However, using
Proposition 2.10, we show that a similar result holds for counter
systems of threshold automata and ELTLFT:

Proposition 4.2. Given a threshold automaton TA and an ELTLFT
formula ϕ, if Sys(TA) |= Eϕ, then there are an initial configura-
tion σ1 ∈ I and a schedule τ · ρω with the following properties:
1. the path satisfies the formula: path(σ1, τ · ρω) |= ϕ,
2. application of ρ forms a cycle: ρk(τ(σ1)) = τ(σ1) for k ≥ 0.

Although in [43] we use Büchi automata to prove Proposition 4.2,
we do not use Büchi automata in this paper. Since ELTLFT uses
only the temporal operators F and G , we found it much easier to
reason about the structure of ELTLFT formulas directly (in the spirit
of [29]) and then apply path reductions, rather than constructing the
synchronous product of a Büchi automaton and of a counter system
and then finding proper path reductions.

724

157

can(ϕ) [0]

a

[0.0]

F (d ∧ G true)

[0.1]

d

[0.1.0]

G true

[0.1.1]

F (e ∧ . . .)
[0.2]

e

[0.2.0]

G true

[0.2.1]

G (b ∧ F (c ∧ G true) ∧ G true)

[0.3]

b

[0.3.0]

F (c ∧ G true)

[0.3.1]

c G true

G true

[0.3.2]

Figure 5. A canonical syntax tree of the ELTLFT formula ϕ ≡
F (a ∧ F d ∧ F e ∧ G b ∧ GF c) considered in Example 4.1. The
labels [w] denote identifiers of the tree nodes.

Although Proposition 4.2 guarantees counterexamples of lasso
shape, it is not sufficient for model checking: (i) counter systems
are infinite state, so that state enumeration may not terminate, and
(ii) Proposition 4.2 does not provide us with bounds on the length of
the lassos needed for bounded model checking. In the next section,
we show how to split a lasso schedule in finite segments and to find
constraints on lasso schedules that satisfy an ELTLFT formula. In
Section 6 we then construct shorter (bounded length) segments.

4.2 Characterizing Shapes of Lasso Schedules
We now construct a cut graph of an ELTLFT formula: Cut graphs
constrain the orders in which subformulas that start with the oper-
ator F are witnessed by configurations. The nodes of a cut graph
correspond to cut points, while the edges constrain the order between
the cut points. Using cut points, we give necessary and sufficient con-
ditions for a lasso to satisfy an ELTLFT formula in Theorems 4.12
and 4.13. Before defining cut graphs, we give the technical defini-
tions of canonical formulas and canonical syntax trees.

Definition 4.3. We inductively define canonical ELTLFT formulas:
• if p is a propositional formula, then the formula p ∧ G true is a

canonical formula of rank 0,
• if p is a propositional formula and formulas ψ1, . . . , ψk are

canonical formulas (of any rank) for some k ≥ 1, then the
formula p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ G true is a canonical formula
of rank 1,
• if p is a propositional formula and formulas ψ1, . . . , ψk are

canonical formulas (of any rank) for some k ≥ 0, and ψk+1 is
a canonical formula of rank 0 or 1, then the formula p ∧ Fψ1 ∧
· · · ∧ Fψk ∧ Gψk+1 is a canonical formula of rank 2.

Example 4.4. Let p and q be propositional formulas. The formulas
p∧G true and true∧F (q∧G true)∧G (p∧G true) are canonical,
while the formulas p, F q, and G p are not canonical. Continuing
Example 4.1, the canonical version of the formula F (a∧F d∧F e∧
G b∧GF c) is the formula F (a∧F (d∧G true)∧F (e∧G true)∧
G (b ∧ F (c ∧ G true) ∧ G true)). /

We will use formulas in the following canonical form in order to
simplify presentation.

Observation 1. The properties of canonical ELTLFT formulas:
1. Every canonical formula consists of canonical subformulas of

the form p∧ Fψ1 ∧ · · · ∧ Fψk ∧Gψk+1 for some k ≥ 0, for a
propositional formula p, canonical formulas ψ1, . . . , ψk, and a
formula ψk+1 that is either canonical, or equals to true .

2. If a canonical formula contains a subformula G (· · · ∧ Gψ),
then ψ equals true .

Proposition 4.5. There is a function can : ELTLFT → ELTLFT
that produces for each formula ϕ ∈ ELTLFT an equivalent canoni-
cal formula can(ϕ).

[0]

[0.1]

[0.2]
loopstart

[0.3.1]

loopend

Figure 6. The cut graph of the canonical syntax tree in Figure 5

For an ELTLFT formula, there may be several equivalent canoni-
cal formulas, e.g., p∧F (q∧G true)∧F (p∧G true)∧G true and
p ∧ F (p ∧ G true) ∧ F (q ∧ G true) ∧ G true differ in the order of
F -subformulas. With the function can we fix one such a formula.

Canonical syntax trees. The canonical syntax tree of the formula
introduced in Example 4.1 is shown in Figure 5. With N∗0 we denote
the set of all finite words over natural numbers — these words are
used as node identifiers.

Definition 4.6. The canonical syntax tree of a formulaϕ ∈ ELTLFT
is the set T (ϕ) ⊆ ELTLFT×N∗0 constructed inductively as follows:
1. The tree contains the root node labeled with the canonical

formula can(ϕ) and id 0, that is, 〈can(ϕ), 0〉 ∈ T (ϕ).
2. Consider a tree node 〈ψ,w〉 ∈ T (ϕ) such that for some

canonical formula ψ′ ∈ ELTLFT one of the following holds:
(a) ψ = ψ′ = can(ϕ), or (b) ψ = Fψ′, or (c) ψ = Gψ′.
If ψ′ is p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1 for some k ≥ 0, then
the tree T (ϕ) contains a child node for each of the conjuncts
of ψ′, that is, 〈p, w.0〉 ∈ T (ϕ), as well as 〈Fψi, w.i〉 ∈ T (ϕ)
and 〈Gψj , w.j〉 ∈ T (ϕ) for 1 ≤ i ≤ k and j = k + 1.

Observation 2. The canonical syntax tree T (ϕ) of an ELTLFT
formula ϕ has the following properties:
• Every node 〈ψ,w〉 has the unique identifier w, which encodes

the path to the node from the root.
• Every intermediate node is labeled with a temporal operator F

or G over the conjunction of the formulas in the children nodes.
• The root node is labeled with the formula ϕ itself, and ϕ is

equivalent to the conjunction of the root’s children formulas,
possibly preceded with a temporal operator F or G .

The temporal formulas that appear under the operator G have
to be dealt with by the loop part of a lasso. To formalize this, we
say that a node with id w ∈ N∗0 is covered by a G -node, if w can
be split into two words u1, u2 ∈ N∗0 with w = u1.u2, and there is a
formula ψ ∈ ELTLFT such that 〈Gψ, u1〉 ∈ T (ϕ).

Cut graphs. Using the canonical syntax tree T (ϕ) of a formula ϕ,
we capture in a so-called cut graph the possible orders in which
formulas Fψ should be witnessed by configurations of a lasso-
shaped path. We will then use the occurrences of the formula ψ to
cut the lasso into bounded finite schedules.

Example 4.7. Figure 6 shows the cut graph of the canonical syntax
tree in Figure 5. It consists of tree node ids for subformulas starting
with F , and two special nodes for the start and the end of the loop.
In the cut graph, the node with id 0 precedes the node with id 0.1,
since at least one configuration satisfying (a ∧ F (d ∧ . . .) ∧ . . .)
should occur on a path before (or at the same moment as) a state
satisfying (d∧ . . .). Similarly, the node with id 0 precedes the node
with id 0.2. The nodes with ids 0.1 and 0.2 do not have to precede
each other, as the formulas d and e can be satisfied in either order.
Since the nodes with the ids 0, 0.1, and 0.2 are not covered by a
G -node, they both precede the loop start. The loop start precedes
the node with id 0.3.1, as this node is covered by a G -node. /

Definition 4.8. The cut graph G(ϕ) of an ELTLFT formula is a
directed acyclic graph (VG , EG) with the following properties:

725

158

1. The set of nodes VG = {loopstart, loopend} ∪ {w ∈ N∗0 |
∃ψ. 〈Fψ,w〉 ∈ T (ϕ)} contains the tree ids that label F -
formulas and two special nodes loopstart and loopend, which
denote the start and the end of the loop respectively.

2. The set of edges EG satisfies the following constraints:
(a) Each tree node 〈Fψ,w〉 ∈ T (ϕ) that is not covered by a

G -node precedes the loop start, i.e., (w, loopstart) ∈ EG .
(b) For each tree node 〈Fψ,w〉 ∈ T (ϕ) covered by a G -node:

• the loop start precedes w, i.e., (loopstart, w) ∈ EG , and
• w precedes the loop end, i.e., (w, loopend) ∈ EG .

(c) For each pair of tree nodes 〈Fψ1, w〉 , 〈Fψ2, w.i〉 ∈ T (ϕ)
not covered by a G -node, we require (w,w.i) ∈ EG .

(d) For each pair of tree nodes 〈Fψ1, w1〉 , 〈Fψ2, w2〉 ∈ T (ϕ)
that are both covered by a G -node, we require either
(w1, w2) ∈ EG , or (w2, w1) ∈ EG (but not both).

Definition 4.9. Given a lasso τ · ρω and a cut graph G(ϕ) =
(VG , EG), we call a function ζ : VG → {0, . . . , |τ |+ |ρ| − 1} a cut
function, if the following holds:
• ζ(loopstart) = |τ | and ζ(loopend) = |τ |+ |ρ| − 1,
• if (v, v′) ∈ EG , then ζ(v) ≤ ζ(v′).

We call the indices {ζ(v) | v ∈ VG} the cut points. Given a
schedule τ and an index k : 0 ≤ k < |τ | + |ρ|, we say that the
index k cuts τ into π′ and π′′, if τ = π′ · π′′ and |π′| = k.

Informally, for a tree node 〈Fψ,w〉 ∈ T (ϕ), a cut point
ζ(w) witnesses satisfaction of Fψ, that is, the formula ψ holds
at the configuration located at the cut point. It might seem that
Definitions 4.8 and 4.9 are too restrictive. For instance, assume that
the node 〈Fψ,w〉 is not covered by a G -node, and there is a lasso
schedule τ · ρω that satisfies the formula ϕ at a configuration σ. It is
possible that the formulaψ is witnessed only by a cut point inside the
loop. At the same time, Definition 4.9 forces ζ(w) ≤ ζ(loopstart).
We show that this problem is resolved by unwinding the loop K
times for some K ≥ 0, so that there is a cut function for the lasso
with the prefix τ · ρK and the loop ρ:

Proposition 4.10. Let ϕ be an ELTLFT formula, σ be a configu-
ration and τ · ρω be a lasso schedule applicable to σ such that
path(σ, τ · ρω) |= ϕ holds. There is a constant K ≥ 0 and a cut
function ζ such that for every 〈Fψ,w〉 ∈ G(T (ϕ)) if ζ(w) cuts
(τ · ρK) · ρ into π′ and π′′, then ψ is satisfied at the cut point, that
is, path(π′(σ), π′′ · ρω) |= ψ.

Proof sketch. The detailed proof is given in [43]. We will present the
required constant K ≥ 0 and the cut function ζ. To this end, we use
extreme appearances of F -formulas (cf. [29, Sec. 4.3]) and use them
to find ζ. An extreme appearance of a formula Fψ is the furthest
point in the lasso that still witnesses ψ. There might be a subformula
that is required to be witnessed in the prefix, but in τ · ρωit is only
witnessed by the loop. To resolve this, we replace τ by a a longer
prefix τ · ρK , by unrolling the loop ρ several times; more precisely,
K times, where K is the number of nodes that should precede the
lasso start. In other words, if all extreme appearances of the nodes
happen to be in the loop part, and they appear in the order that is
against the topological order of the graph G(T (ϕ)), we unroll the
loop K times (the number of nodes that have to be in the prefix)
to find the prefix, in which the nodes respect the topological order
of the graph. In the unrolled schedule we can now find extreme
appearances of the required subformulas in the prefix.

We show that to satisfy an ELTLFT formula, a lasso should
(i) satisfy propositional subformulas of F -formulas in the respective
cut points, and (ii) maintain the propositional formulas of G -
formulas from some cut point on. This is formalized as a witness.

In the following definition, we use a short-hand notation for
propositional subformulas: given an ELTLFT-formula ψ and its

canonical form can(ψ) = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, we
use the notation prop(ψ) to denote the formula ψ0.

Definition 4.11. Given a configuration σ, a lasso τ · ρω applicable
to σ, and an ELTLFT formula ϕ, a cut function ζ of G(T (ϕ)) is a
witness of path(σ, τ · ρω) |= ϕ, if the three conditions hold:
(C1) For can(ϕ) ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1:

(a) σ |= ψ0, and
(b) Cfgs(σ, τ · ρ) |= prop(ψk+1).

(C2) For 〈Fψ, v〉 ∈ T (ϕ) with ζ(v) < |τ |, if ζ(v) cuts τ · ρ into
π′ and π′′ and ψ ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, then:
(a) π′(σ) |= ψ0, and
(b) Cfgs(π′(σ), π′′) |= prop(ψk+1).

(C3) For 〈Fψ, v〉 ∈ T (ϕ) with ζ(v) ≥ |τ |, if ζ(v) cuts τ · ρ into
π′ and π′′ and ψ ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, then:
(a) π′(σ) |= ψ0, and
(b) Cfgs(τ(σ), ρ) |= prop(ψk+1).

Conditions (a) require that propositional formulas hold in a con-
figuration, while conditions (b) require that propositional formulas
hold on a finite suffix. Hence, to ensure that a cut function consti-
tutes a witness, one has to check the configurations of a fixed number
of finite paths (between the cut points). This property is crucial for
the path reduction (see Section 6). Theorems 4.12 and 4.13 show
that the existence of a witness is a sound and complete criterion for
the existence of a lasso satisfying an ELTLFT formula.

Theorem 4.12 (Soundness). Let σ be a configuration, τ · ρω be a
lasso applicable to σ, and ϕ be an ELTLFT formula. If there is a
witness of path(σ, τ · ρω) |= ϕ, then the lasso τ · ρω satisfies ϕ,
that is path(σ, τ · ρω) |= ϕ.

Theorem 4.13 (Completeness). Let ϕ be an ELTLFT formula, σ
be a configuration and τ · ρω be a lasso applicable to σ such that
path(σ, τ · ρω) |= ϕ holds. There is a witness of path(σ, (τ · ρK) ·
ρω) |= ϕ for some K ≥ 0.

Theorem 4.12 is proven for subformulas of ϕ by structural
induction on the intermediate nodes of the canonical syntax tree.
In the proof of Theorem 4.13 we use Proposition 4.10 to prove the
points of Definition 4.11. (The detailed proofs are given in [43].)

4.3 Using Cut Graphs to Enumerate Shapes of Lassos
Proposition 4.2 and Theorem 4.13 suggest that in order to find a
schedule that satisfies an ELTLFT formula ϕ, it is sufficient to look
for lasso schedules that can be cut in such a way that the config-
urations at the cut points and the configurations between the cut
points satisfy certain propositional formulas. In fact, the cut points
as defined by cut functions (Definition 4.9) are topological order-
ings of the cut graph G(T (ϕ)). Consequently, by enumerating the
topological orderings of the cut graph G(T (ϕ)) we can enumerate
the lasso shapes, among which there is a lasso schedule satisfying ϕ
(if ϕ holds on the counter system). These shapes differ in the order,
in which F -subformulas of ϕ are witnessed. For this, one can use
fast generation algorithms, e.g., [13].

Example 4.14. Consider the cut graph in Figure 6. The order-
ing of its vertices 0, 0.1, 0.2, loopstart, 0.3.1, loopend corresponds
to the lasso shape (a) shown in Figure 4, while the ordering
loopstart, 0, 0.2, 0.1, loopstart, 0.3.1, loopend corresponds to the
lasso shape (b). These are the two lasso shapes that one has to
analyze, and they are the result of our construction using the cut
graph. The other 18 lasso shapes in the figure are not required, and
not constructed by our method. /

From this observation, we conclude that given a topological
ordering v1, . . . , v|VG | of the cut graph G(T (ϕ)) = (VG , EG), one
has to look for a lasso schedule that can be written as an alternating

726

159

sequence of configurations σi and schedules τj :

σ0, τ0, σ1, τ1, . . . , σ`, τ`, . . . , σ|VG |−1, τ|VG |, σ|VG |, (2)

where v` = loopstart, v|VG | = loopend, and σ` = σ|VG |. Moreover,
by Definition 4.11, the sequence of configurations and schedules
should satisfy (C1)–(C3), e.g., if a node vi corresponds to the for-
mula F (ψ0∧· · ·∧Gψk+1) and this formula matches Condition (C2),
then the following should hold:
1. Configuration σi satisfies the propositional formula: σi |= ψ0.
2. All configurations visited by the schedule τi · . . . · τ|VG | from the

configuration σi satisfy the propositional formula prop(ψk+1).
Formally, Cfgs(σi, τi · . . . · τ|VG |) |= prop(ψk+1).
One can write an SMT query for the sequence (2) satisfying

Conditions (C1)–(C3). However, this approach has two problems:
1. The order of rules in schedules τ0, . . . , τ|VG | is not fixed. Non-

deterministic choice of rules complicates the SMT query.
2. To guarantee completeness of the search, one requires a bound

on the length of schedules τ0, . . . , τ|VG |.
For reachability properties these issues were addressed in [42]

by showing that one only has to consider specific orders of the rules;
so-called representative schedules. To lift this technique to ELTLFT,
we are left with two issues:
1. The shortening technique applies to steady schedules, i.e., the

schedules that do not change evaluation of the guards. Thus, we
have to break the schedules τ0, . . . , τ|VG | into steady schedules.
This issue is addressed in Section 5.

2. The shortening technique preserves state reachability, e.g., after
shortening of τi, the resulting schedule still reaches configura-
tion σi+1. But it may violate an invariant such as Cfgs(σi, τi ·
. . . · τ|VG |) |= prop(ψk+1). This issue is addressed in Section 6.

5. Cutting Lassos with Threshold Guards
We introduce threshold graphs to cut a lasso into steady schedules,
in order to apply the shortening technique of Section 6. Then,
we combine the cut graphs and threshold graphs to cut a lasso
into smaller finite segments, which can be first shortened and then
checked with the approach introduced in Section 4.3.

Given a configuration σ, its context ω(σ) is the set that consists
of the lower guards unlocked in σ and the upper guards locked in σ,
i.e., ω(σ) = Ωrise ∪ Ωfall, where Ωrise = {g ∈ Φrise | σ |= g}
and Ωfall = {g ∈ Φfall | σ 6|= g}. As discussed in Example 2.9 on
page 4, since the shared variables are never decreased, the contexts
in a path are monotonically non-decreasing:

Proposition 5.1 (Prop. 3 of [42]). If a transition t is enabled in a
configuration σ, then ω(σ) ⊆ ω(t(σ)).

Example 5.2. Continuing Example 2.9, which considers the TA in
Figure 2. Both threshold guards γ1 and γ2 are false in the initial
state σ. Thus, ω(σ) = ∅. The transition t = (r1, 1) unlocks the
guard γ1, i.e., ω(t(σ)) = {γ1}. /

As the transitions of the counter system Sys(TA) never decrease
shared variables, the loop of a lasso schedule must be steady:

Proposition 5.3. For each configuration σ and a schedule τ · ρω ,
if ρk(τ(σ)) = τ(σ) for k ≥ 0, then the loop ρ is steady for τ(σ),
that is, ω(ρ(τ(σ))) = ω(τ(σ)).

In [42], Proposition 5.1 was used to cut a finite path into
segments, one per context. We introduce threshold graphs and their
topological orderings to apply this idea to lasso schedules.

Definition 5.4. A threshold graph isH(TA) = (VH, EH) such that:
• The vertices set VH contains the threshold guards and the special

node loopstart, i.e., VH = Φrise ∪ Φfall ∪ {loopstart}.

(a)

κ[`3] = 0
γ1 γ2 ψfair

(b)

κ[`3] = 0
γ1 ψfair

(c)

κ[`3] = 0
ψfair

Figure 7. The shapes of lassos to check the correctness property in
Example 3.3. Recall that γ1 and γ2 are the threshold guards, defined
as x ≥ t+ 1− f and x ≥ n− t− f respectively.

• There is an edge from a guard g1 ∈ Φrise to a guard g2 ∈ Φrise,
if g2 cannot be unlocked before g1, i.e., (g1, g2) ∈ EH, if for
each configuration σ ∈ Σ, σ |= g2 implies σ |= g1.
• There is an edge from a guard g1 ∈ Φfall to a guard g2 ∈ Φfall,

if g2 cannot be locked before g1, i.e., (g1, g2) ∈ EH, if for each
configuration σ ∈ Σ, σ 6|= g2 implies σ 6|= g1.

Note that the conditions in Definition 5.4 can be easily checked
with an SMT solver, for all configurations.

Example 5.5. The threshold graph of the TA in Figure 2 has the
vertices VH = {γ1, γ2, loopstart} and the edges EH = {(γ1, γ2)}.
/

Similar to Section 4.3, we consider a topological ordering
g1, . . . , g`, . . . , g|VH| of the vertices of the threshold graph. The
node g` = loopstart indicates the point where a loop should start, and
thus by Proposition 5.3, after that point the context does not change.
Thus, we consider only the subsequence g1, . . . , g`−1 and split the
path path(σ, τ · ρ) of a lasso schedule τ · ρω into an alternating
sequence of configurations σi and schedules τ0 and tj · τj , for
1 ≤ j < `, ending up with the loop ρ (starting in σ`−1 and ending
in σ` = σ`−1):

σ0, τ0, σ1, (t1 · τ1), . . . , σ`−2, (t`−1 · τ`−1), σ`−1, ρ, σ` (3)

In this sequence, the transitions t1, . . . , t`−1 change the context,
and the schedules τ0, τ1, . . . , τ`−1, ρ are steady. Finally, we inter-
leave a topological ordering of the vertices of the cut graph with a
topological ordering of the vertices of the threshold graph. More
precisely, we use a topological ordering of the vertices of the union
of the cut graph and the threshold graph. We use the resulting se-
quence to cut a lasso schedule following the approach in Section 4.3
(cf. Equation (2)). By enumerating all such interleavings, we obtain
all lasso shapes. Again, the lasso is a sequence of steady schedules
and context-changing transitions.

Example 5.6. Continuing Example 1 given on page 5, we consider
the lasso shapes that satisfy the ELTLFT formula GFψfair∧κ[`0] =
0 ∧ Gκ[`3] = 0. Figure 7 shows the lasso shapes that have to be
inspected by an SMT solver. In case (a), both threshold guards γ1

and γ2 are eventually changed to true, while the counter κ[`3] is
never increased in a fair execution. For n = 3t, this is actually
a counterexample to the correctness property explained in Exam-
ple 1. In cases (b) and (c) at most one threshold guard is eventually
changed to true, so these lasso shapes cannot produce a counterex-
ample. /

In the following section, we will show how to shorten steady
schedules, while maintaining Conditions (C1)–(C3) of Defini-
tion 4.11, required to satisfy the ELTLFT formula.

727

160

τup: σ1 σ2 σ3

κ[`]++ κ[`]--

τdown: σ1 σ′2 σ3

κ[`]-- κ[`]++

Figure 8. Changing the order of transitions can violate ELTLFT
formulas. If σ1.κ[`] = 1, then for the upper schedule τup holds that
Cfgs(σ1, τup) |= κ[`] > 0, while for the lower one this is not the
case, because σ′2 6|= κ[`] > 0.

6. The Short Counterexample Property
Our verification approach focuses on counterexamples, and as
discussed in Section 3, negations of specifications are expressed
in ELTLFT. In the case of reachability properties, counterexamples
are finite schedules reaching a bad state from an initial state. An
efficient method for finding counterexamples to reachability can
be found in [42]. It is based on the short counterexample property.
Namely, it was proven that for each threshold automaton, there is a
constant d such that if there is a schedule that reaches a bad state,
then there must also exist an accelerated schedule that reaches that
state in at most d transitions (i.e., d is the diameter of the counter
system). The proof in [42] is based on the following three steps:
1. each finite schedule (which may or may not be a counterexam-

ple), can be divided into a few steady schedules,
2. for each of these steady schedules they find a representative,

i.e., an accelerated schedule of bounded length, with the same
starting and ending configurations as the original schedule,

3. at the end, all these representatives are concatenated in the same
order as the original steady schedules.
This result guarantees that the system is correct if no counterex-

ample to reachability properties is found using bounded model
checking with bound d. In this section, we extend the technique
from Point 2 from reachability properties to ELTLFT formulas. The
central result regarding Point 2 is the following proposition which
is a specialization of [42, Prop. 7]:

Proposition 6.1. Let TA = (L, I,Γ,Π,R,RC) be a threshold
automaton. For every configuration σ and every steady schedule τ
applicable to σ, there exists a steady schedule srep[σ, τ] with the
following properties: srep[σ, τ] is applicable to σ, srep[σ, τ](σ) =
τ(σ), and |srep[σ, τ]| ≤ 2 · |R|.

We observe that the proposition talks about the first configura-
tion σ and the last one τ(σ), while it ignores intermediate config-
urations. However, for ELTLFT formulas, one has to consider all
configurations in a schedule, and not just the first and the last one.

Example 6.2. Figure 8 shows the result of swapping transitions.
The approaches by [50] and [42] are only concerned with the first
and last configurations: they use the property that after swapping
transitions, σ3 is still reached from σ1. The arguments used in [42,
50] do not care about the fact that the resulting path visits a different
intermediate state (σ′2 instead of σ2). However, if σ1.κ[`] = 1, then
σ2.κ[`] > 0, while σ′2.κ[`] = 0. Hence, swapping transitions may
change the evaluation of ELTLFT formulas, e.g., G (κ[`] > 0). /

Another challenge in verification of ELTLFT formulas is that
counterexamples to liveness properties are infinite paths. As dis-
cussed in Section 4, we consider infinite paths of lasso shape ϑ · ρω .
For a finite part of a schedule, ϑ · ρ, satisfying an ELTLFT formula,
we show the existence of a new schedule, ϑ′ · ρ′, of bounded length
satisfying the same formula as the original one. Regarding the short-
ening, our approach uses a similar idea as the one from [42]. We
follow modified steps from reachability analysis:

1. We split ϑ · ρ into several steady schedules, using cut points
introduced in Sections 4 and 5. The cut points depend not
only on threshold guards, but also on the ELTLFT formula ϕ
representing the negation of a specification we want to check.
Given such a steady schedule τ , each configuration of τ satisfies
a set of propositional subformulas of ϕ, which are covered by
the operator G in ϕ.

2. For each of these steady schedules we find a representative, that
is, an accelerated schedule of bounded length that satisfies the
necessary propositional subformulas as in the original schedule
(i.e., not just that starting and ending configurations coincide).

3. We concatenate the obtained representatives in the original order.
In [43], we present the mathematical details for obtaining these

representative schedules, and prove different cases that taken to-
gether establish our following main theorem:

Theorem 6.3. Let TA = (L, I,Γ,Π,R,RC) be a threshold
automaton, and let Locs ⊆ L be a set of locations. Let σ be a
configuration, let τ be a steady conventional schedule applicable
to σ, and let ψ be one of the following formulas:

∨

`∈Locs
κ[`] 6= 0, or

∧

`∈Locs
κ[`] = 0.

If all configurations visited by τ from σ satisfy ψ, i.e., Cfgs(σ, τ) |=
ψ, then there is a steady representative schedule repr[ψ, σ, τ] with
the following properties:
a) The representative is applicable, and ends in the same final state:

repr[ψ, σ, τ] is applicable to σ, and repr[ψ, σ, τ](σ) = τ(σ),
b) The representative has bounded length: |repr[ψ, σ, τ]| ≤ 6 · |R|,
c) The representative maintains the formula ψ. In other words,

Cfgs(σ, repr[ψ, σ, τ]) |= ψ,
d) The representative is a concatenation of three representative

schedules srep from Proposition 6.1:
there exist τ1, τ2 and τ3, (possibly empty) subschedules of τ ,
such that τ1 · τ2 · τ3 is applicable to σ, and it holds that
(τ1 · τ2 · τ3)(σ) = τ(σ), and repr[ψ, σ, τ] = srep[σ, τ1] ·
srep[τ1(σ), τ2] · srep[(τ1 · τ2)(σ), τ3].

Our approach is slightly different in the case when the formula ψ
has a more complex form:

∧
1≤m≤n

∨
`∈Locsm κ[`] 6= 0, for

Locsm ⊆ L, where 1 ≤ m ≤ n and n ∈ N. In this case, our
proof requires the schedule τ to have sufficiently large counter
values. To ensure that there is an infinite schedule with sufficiently
large counter values, we first prove that if a counterexample exists
in a small system, there also exists one in a larger system, that is,
we consider configurations where each counter is multiplied with
a constant finite multiplier µ. For resilience conditions that do not
correspond to parameterized systems (i.e., fix the system size to,
e.g., n = 4) or pathological threshold automata, such multipliers
may not exist. However, all our benchmarks have multipliers, and
existence of multipliers can easily be checked using simple queries
to SMT solvers in preprocessing. This additional restriction leads to
slightly smaller bounds on the lengths of representative schedules:

Theorem 6.4. Fix a threshold automaton TA = (L, I,Γ,Π,R,RC)
that has a finite multiplier µ, and a configuration σ. For an
n ∈ N, fix sets of locations Locsm ⊆ L for 1 ≤ m ≤ n. If
ψ =

∧
1≤m≤n

∨
`∈Locsm κ[`] 6= 0, then for every steady conven-

tional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there
exists a schedule repr∧∨[ψ, µσ, µτ] with the following properties:
a) The representative is applicable and ends in the same final state:

repr∧∨[ψ, µσ, µτ] is a steady schedule applicable to µσ, and
repr∧∨[ψ, µσ, µτ](µσ) = µτ(µσ),

b) The representative has bounded length: |repr∧∨[ψ, µσ, µτ]| ≤
4 · |R|,

c) The representative maintains the formula ψ. In other words,
Cfgs(µσ, repr∧∨[ψ, µσ, µτ]) |= ψ,

728

161

`0

`1

`2 `3

r2

r1

r3

r4

r5

r6

r7 r8

Configuration σ1

`0

`1

`2 `3

r2

r1

r3

r4

r5

r6

r7 r8

Configuration σ2

r1 r6 r4 r2 r4

r6 r2 r1 r4 r4

One thread All other threads

Figure 9. Example of constructing a representative schedule by moving a thread to the beginning. The number of dots in the local states
correspond to counter values, i.e., σ1.κ[`0] = σ1.κ[`1] = σ1.κ[`2] = 1 and σ1.κ[`3] = 0.

d) The representative is a concatenation of two representative
schedules srep from Proposition 6.1:
repr∧∨[ψ, µσ, µτ] = srep[µσ, τ] · srep[τ(µσ), (µ− 1)τ].

The main technical challenge for proving Theorems 6.3 and 6.4
is that we want to swap transitions and maintain ELTLFT formulas
at the same time. As discussed in Example 6.2, simply applying the
ideas from the reachability analysis in [42, 50] is not sufficient.

We address this challenge by more refined swapping strategies
depending on the property ψ of Theorem 6.3. For instance, the
intuition behind

∨
`∈Locs κ[`] 6= 0 is that in a given distributed

algorithm, there should always be at least one process in one of
the states in Locs . Hence, we would like to consider individual
processes, but in the context of counter systems. Therefore, we
introduce a mathematical notion we call a thread, which is a
schedule that can be executed by an individual process. A thread
is then characterized depending on whether it starts in Locs , ends
in Locs , or visits Locs at some intermediate step. Based on this
characterization, we show that ELTLFT formulas are preserved if we
move carefully chosen threads to the beginning of a steady schedule
(intuitively, this corresponds to τ1, and τ2 from Theorem 6.3). Then,
we replace the threads, one by one, by their representative schedules
from Proposition 6.1, and append another representative schedule
for the remainder of the schedule. In this way, we then obtain the
representative schedules in Theorem 6.3(d).

Example 6.5. We consider the TA in Figure 2, and show how
a schedule τ = (r1, 1), (r6, 1), (r4, 1), (r2, 1), (r4, 1) applicable
to σ1, with τ(σ1) = σ2 can be shortened. Figure 9 follows this
example where τ is the upper schedule. Assume that Cfgs(σ1, τ) |=
κ[`2] 6= 0, and that we want to construct a shorter schedule that
produces a path that satisfies the same formula.

In our theory, subschedule (r1, 1), (r4, 1) is a thread of σ1 and τ
for two reasons: (1) the counter of the starting local state of (r1, 1)
is greater than 0, i.e., σ1.κ[`0] = 1, and (2) it is a sequence of rules
in the control flow of the threshold automaton, i.e., it starts from `0,
then uses (r1, 1) to go to local state `2 and then (r4, 1) to arrive
at `3. The intuition of (2) is that a thread corresponds to a process
that executes the threshold automaton. Similarly, (r6, 1), (r2, 1) and
(r4, 1) are also threads of σ1 and τ . In fact, we can show that each
schedule can be decomposed into threads. Based on this, we analyze
which local states are visited when a thread is executed.

Our formula Cfgs(σ1, τ) |= κ[`2] 6= 0 talks about `2. Thus, we
are interested in a thread that ends at `2, because after executing this
thread, intuitively there will always be at least one process in `2, i.e.,
the counter κ[`2] will be nonzero, as required. Such a thread will be
moved to the beginning. We find that thread (r6, 1), (r2, 1) meets
this requirement. Similarly, we are also interested in a thread that
starts from `2. Before we execute such a thread, at least one process
must always be in `2, i.e., κ[`2] will be nonzero. For this, we single
out the thread (r4, 1), as it starts from `2.

Independently of the actual positions of these threads within a
schedule, our condition κ[`2] 6= 0 is true before (r4, 1) starts, and af-
ter (r6, 1), (r2, 1) ends. Hence, we move the thread (r6, 1), (r2, 1)
to the beginning, and obtain a schedule that ensures our condition in
all visited configurations; cf. the lower schedule in Figure 9. Then we
replace the thread (r6, 1), (r2, 1), by a representative schedule from
Proposition 6.1, and the remaining part (r1, 1), (r4, 1), (r4, 1), by
another one. Indeed in our example, we could merge (r4, 1), (r4, 1)
into one accelerated transition (r4, 2) and obtain a schedule which
is shorter than τ while maintaining κ[`2] 6= 0. /

7. Application of the Short Counterexample
Property and Experimental Evaluation

7.1 SMT Encoding
We use the theoretical results from the previous section to give
an efficient encoding of lasso-shaped executions in SMT with
linear integer arithmetic. The definitions of counter systems in
Section 2.2 directly tell us how to encode paths of the counter
system. Definition 2.5 describes a configuration σ as tuple (κ,g,p),
where each component is encoded as a vector of SMT integer
variables. Then, given a path σ0, t1, σ1, . . . , tk−1, σk−1, tk, . . . σk
of length k, by κi, gi, and pi we denote the values of the vectors
that correspond to σi, for 0 ≤ i ≤ k. As the parameter values do not
change, we use one copy of the variables p in our SMT encoding.
By κi`, for 1 ≤ ` ≤ |L|, we denote the `th component of κi, that is,
the counter corresponding to the number of processes in local state `
after the ith iteration. Definition 2.5 also gives us the constraint on
the initial states, namely:

init(0) ≡
∑

`∈I
κ0
` = N(p)∧

∑

` 6∈I
κ0
` = 0∧g0 = 0∧RC(p) (4)

Example 7.1. The TA from Figure 2 has four local states `0, `1,
`2, `3 among which `0 and `1 are the initial states. In this example,
N(p) is n− f , and the resilience condition requires that there are
less than a third of the processes faulty, i.e., n > 3t. We obtain
init(0) ≡ κ0

0 + κ0
1 = n − f ∧ κ0

2 + κ0
3 = 0 ∧ x0 = 0 ∧ n >

3t ∧ t ≥ f ∧ f ≥ 0. The constraint is in linear integer arithmetic. /

Further, Definition 2.8 encodes the transition relation. A tran-
sition is identified by a rule and an acceleration factor. A rule is
identified by threshold guards ϕ≤ and ϕ>, local states from and to
between which processes are moved, and by u, which defines the
increase of shared variables. As according to Section 5 only a fixed
number of transitions change the context and thus may change the
evaluation of ϕ≤ and ϕ>, we do not encode ϕ≤ and ϕ> for each
rule. In fact, we check the guards ϕ≤ and ϕ> against a fixed number
of configurations, which correspond to the cut points defined by
the threshold guards. The acceleration factor δ is indeed the only
variable in a transition, and the SMT solver has to find assignments

729

162

of these factors. Then this transition from the ith to the (i + 1)th
configuration is encoded using rule r = (from, to, ϕ≤, ϕ>,u) as
follows:

T (i, r) ≡ Move(from, to, i) ∧ IncShd(u, i) (5)

Move(`, `′, i) ≡ ` 6= `′ → κi` − κi+1
` = δi+1 = κi+1

`′ − κi`′

∧ ` = `′ →
(
κi` = κi+1

` ∧ κi+1
`′ = κi`′

)

∧
∧

s∈L\{`,`′}
κis = κi+1

s

IncShd(u, i) ≡ gi+1 − gi = δi+1 · u
Given a schedule τ , we encode in linear integer arithmetic the

paths that follow this schedule from an initial state as follows:

E(τ) ≡ init(0) ∧ T (0, r1) ∧ T (1, r2) ∧ . . .
We can now ask the SMT solver for assignments of the parameters as
well as the factors δ1, δ2, . . . in order to check whether a path with
this sequence of rules exists. Note that some factors can be equal
to 0, which means that the corresponding rule does not have any
effect (because no process executes it). If τ encodes a lasso shape,
and the SMT solver reports a satisfying assignment, this assignment
is a counterexample. If the SMT solver reports unsat on all lassos
discussed in Section 5, then there does not exists a counterexample
and the algorithm is verified.

Example 7.2. In Example 3.3 we have seen the fairness requirement
ψfair, which is a property of a configuration that can be encoded as
fair(i) ≡ κi1 = 0 ∧ (xi ≥ t + 1 → κi0 = 0 ∧ κi1 = 0) ∧ (xi ≥
n − t → κi0 = 0 ∧ κi2 = 0), which is a formula in linear integer
arithmetic. Then, e.g., fair(5) encodes that the fifth configuration
satisfies the predicate. Such state formulas can be added as conjunct
to the formula E(τ) that encodes a path. /

As discussed in Sections 4 and 5 we have to encode lassos of the
form ϑ · ρω starting from an initial configuration σ. We immediately
obtain a finite representation by encoding the fixed length execution
E(ϑ · ρ) as above, and adding the constraint that applying ρ returns
to the start of the lasso loop, that is, ϑ(σ) = ρ(ϑ(σ)). In SMT this
is directly encoded as equality of integer variables.

7.2 Generating the SMT Queries
The high-level structure of the verification algorithm is given in
Figure 3 on page 6. In this section, we give the details of the
procedure check_one_order, whose pseudo code is given in
Figure 10. It receives as the input the following parameters: a
threshold automaton TA, an ELTLFT formula ϕ, a cut graph G
of ϕ, a threshold graphH of TA, and a topological order ≺ on the
vertices of the graph G ∪ H.

The procedure check_one_order constructs SMT assertions
about the configurations of the lassos that correspond to the order≺.
As explained in Section 7.1, an ith configuration is defined by the
vectors of SMT variables (κi,gi,p). We use two global variables:
the number fn of the configuration under construction, and the
number fs of the configuration that corresponds to the loop start.
Thus, with the expressions κfn and gfn we refer to the SMT variables
of the configuration whose number is stored in fn.

In the pseudocode in Figure 10, we call SMT_assert(κfn, gfn,
p |= ψ) to add an assertion ψ about the configuration (κfn,gfn,p)
to the SMT query. Finally, the call SMT_sat() returns true, only if
there is a satisfying assignment for the assertions collected so far.
Such an assignment can be accessed with SMT_model() and gives
the values for the configurations and acceleration factors, which
together constitute a witness lasso.

The procedure check_one_order creates the assertions about
the initial configurations. The assertions consist of: the assump-

1 variables fn, fs; // the current configuration number and the loop start
2 // Try to find a witness lasso for: a threshold automaton TA,
3 // an ELTLFT formula ϕ, a cut graph G, a threshold graphH, and
4 // a topological order ≺ on the nodes of G ∪H.
5 procedure check_one_order(TA, ϕ, G, H, ≺):
6 fn := 0; fs := 0;
7 SMT_start(); // start (or reset) the SMT solver
8 assume(can(ϕ) = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1);
9 SMT_assert(κ0,g0,p |= init(0) ∧ ψ0 ∧ ψk+1); // see Equation 4

10 v0 := min≺(VG ∪ VH); // the minimal node w.r.t. the linear order ≺
11 check_node(G, H, ≺, v0, ψk+1, ∅);
12
13 // Try to find a witness lasso starting with the node v and the context Ω,
14 // while preserving the invariant ψinv .
15 recursive procedure check_node(G, H, ≺, v, ψinv , Ω):
16 if not SMT_sat() then:
17 return no_witness;
18 case (a) v ∈ VG \ {loopstart, loopend}:
19 find ψ s.t. 〈Fψ, v〉 ∈ T (ϕ); // v labels a formula in the syntax tree
20 assume(ψ = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1);
21 SMT_assert(κfn,gfn,p |= ψ0);
22 push_segment(ψinv ∧ ψk+1);
23 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
24 check_node(G, H, ≺, v′, ψinv ∧ ψk+1, Ω);
25 case (b) v ∈ VH \ {loopstart, loopend}: // v is a threshold guard
26 if v ∈ Φrise then: // v is an unlocking guard, e.g., x ≥ t+ 1− f
27 push_segment(ψinv); // one rule unlocks v
28 SMT_assert(κfn,gfn,p |= v); // v is unlocked
29 push_segment(ψinv); // execute all unlocked rules
30 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
31 check_node(G, H, ≺, v′, ψinv , Ω ∪ {v});
32 else: /∗ v ∈ Φfall, e.g., x < f , similar to the locking case: use ¬v ∗/
33 case (c) v = loopstart:
34 fs := fn; // the loop starts at the current configuration
35 push_segment(ψinv); // execute all unlocked rules
36 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
37 check_node(G, H, ≺, v′, ψinv , Ω);
38 case (d) v = loopend:
39 SMT_assert(κfn = κfs ∧ gfn = gfs); // close the loop
40 if SMT_sat() then:
41 return witness(SMT_model())
42
43 // Encode a segment of rules as prescribed by [42] and Theorems 6.3–6.4.
44 procedure push_segment(ψinv):
45 // find the number of schedules to repeat in (d) of Theorems 6.3, 6.4
46 nrepetitions := compute_repetitions(ψinv);
47 r1, . . . , rk := compute_rules(Ω); // use sschemaΩ from [42]
48 for _ from 1 to nrepetitions:
49 for j from 1 to k:
50 SMT_assert(κfn,gfn,p |= ψinv);
51 SMT_assert(T (fn, rj)); // modify the counters as in Equation 5
52 fn := fn + 1; // move to the next configuration

Figure 10. Checking one topological order with SMT.

tions init(0) about the initial configurations of the threshold automa-
ton, the top-level propositional formula ψ0, and the invariant propo-
sitional formula ψk+1 that should hold from the initial configuration
on. By writing assume(ψ = ψ0 ∧ F ∧ψ1 . . .Fψk ∧Gψk+1), we
extract the subformulas of a canonical formula ψ (see Section 4.2).
The procedure finds the minimal node in the order ≺ on the nodes
of the graph G ∪ H and calls the procedure check_node for the
initial node, the initial invariant ψk+1, and the empty context ∅.

The procedure check_node is called with a node v of the graph
G ∪ H as a parameter. It adds assertions that encode a finite path
and constraints on the configurations of this path. The finite path
leads from the configuration that corresponds to the node v to the
configuration that corresponds to v’s successor in the order ≺.

730

163

10^0

10^1

10^2

10^3

10^4

10^5

10^6

FRB STRB
NBACC

NBACG
NBAC

BOSCO
BOSCO

BOSCO
BOSCO

BOSCO
ABA ABA C1CS

C1CS
C1CS

CF1S
CF1S

CF1S
CBC CBC CBC CBC

Time to verify an instance, sec. (logscale)

Safety1 Safety2 Liveness1 Liveness2

10^2

10^3

10^4

10^5

10^6

FRB STRB
NBACC

NBACG
NBAC

BOSCO
BOSCO

BOSCO
BOSCO

BOSCO
ABA ABA C1CS

C1CS
C1CS

CF1S
CF1S

CF1S
CBC CBC CBC CBC

Memory to verify an instance, MB (logscale)

Safety1 Safety2 Liveness1 Liveness2

10^0

10^1

10^2

10^3

10^4

10^5

FRB STRB
NBACC

NBACG
NBAC

BOSCO
BOSCO

BOSCO
BOSCO

BOSCO
ABA ABA C1CS

C1CS
C1CS

CF1S
CF1S

CF1S
CBC CBC CBC CBC

Number of lassos (logscale)

Safety1 Safety2 Liveness1 Liveness2

10^0

10^1

10^2

10^3

10^4

10^5

 0 5 10 15 20 25

Number of checked benchmarks (safety only)

Time to verify an instance, sec. (logscale)

This paper KVW15

Figure 11. The plots summarize the following results of running our implementation on all benchmarks: used time in seconds (top left), used
memory in megabytes (top right), the number of checked lassos (bottom left), time used both by our implementation and [42] to check safety
only (bottom right). Several occurrences of the same benchmark correspond to different cases, such as f > 1, f = 1, and f = 0. Symbols �
and � correspond to the safety properties of each benchmark, while symbols � and ♦ correspond to the liveness properties.

The constraints depend on v’s origin: (a) v labels a formula Fψ
in the syntax tree of ϕ, (b) v carries a threshold guard from the
set Φrise ∪ Φfall, (c) v denotes the loop start, or (d) v denotes the
loop end. In case (a), we add an SMT assertion that the current
configuration satisfies the propositional formula prop(ψ) (line 21),
and add a sequence of rules that leads to v’s successor while
maintaining the invariants ψinv of the preceding nodes and the v’s
invariant ψk+1 (line 22). In case (b), in line 27, we add a sequence
of rules, one of which should unlock (resp. lock) the threshold guard
in v ∈ Φrise (resp. v ∈ Φfall). Then, in line 29, we add a sequence
of rules that leads to a configuration of v’s successor. All added
configurations are required to satisfy the current invariant ψinv . As
the threshold guard in v is now unlocked (resp. locked), we include
the guard (resp. its negation) in the current context Ω. In case (c), we
store the current configuration as the loop start in the variable fs and,
as in (a) and (b), add a sequence of rules leading to v’s successor.
Finally, in case (d), we should have reached the ending configuration
that coincides with the loop start. To this end, in line 39, we add
the constraint that forces the counters of both configurations to be
equal. At this point, all the necessary SMT constraints have been
added, and we call SMT_sat to check whether there is an assignment
that satisfies the constraints. If there is one, we report it as a lasso
witnessing the ELTLFT-formula ϕ that consists of: the concrete
parameter values, the values of the counters and shared variables
for each configuration, and the acceleration factors. Otherwise, we
report that there is no witness lasso for the formula ϕ.

The procedure push_segment constructs a sequence of cur-
rently unlocked rules, as in the case of reachability [42]. However,
this sequence should be repeated several times, as required by The-

orems 6.3 and 6.4. Moreover, the freshly added configurations are
required to satisfy the current invariant ψinv .

7.3 Experiments
We extended the tool ByMC [42] with our technique and conducted
experiments2 with the freely available benchmarks from [42]: folk-
lore reliable broadcast (FRB) [14], consistent broadcast (STRB) [64],
asynchronous Byzantine agreement (ABA) [11], condition-based
consensus (CBC) [52], non-blocking atomic commitment (NBAC
and NBACC [61] and NBACG [37]), one-step consensus with
zero degradation (CF1S [21]), consensus in one communication
step (C1CS [12]), and one-step Byzantine asynchronous consensus
(BOSCO [63]). These threshold-guarded fault-tolerant distributed
algorithms are encoded in a parametric extension of Promela.

Negations of the safety and liveness specifications of our bench-
marks — written in ELTLFT — follow three patterns: unsafety
E (p∧ F q), non-termination E (p∧GF r ∧G q), and non-response
E (GF r ∧ F (p ∧ G q)). The propositions p, q, and r follow the
syntax of pform (cf. Table 1), e.g., p ≡ ∧`∈Locs1 κ[`] = 0 and
q ≡ ∨`∈Locs2 κ[`] 6= 0 for some sets of locations Locs1 and Locs2.

The results of our experiments are summarized in Figure 11.
Given the properties of the distributed algorithms found in the lit-
erature, we checked for each benchmark one or two safety prop-
erties (depicted with � and �) and one or two liveness properties
(depicted with � and ♦). For each benchmark, we display the run-
ning times and the memory used together by ByMC and the SMT

2 The details on the experiments and the artifact are available at:
http://forsyte.at/software/bymc/popl17-artifact

731

164

solver Z3 [20], as well as the number of exercised lasso shapes as
discussed in Section 5.

For safety properties, we compared our implementation against
the implementation of [42]. The results are summarized the bottom
right plot in Figure 11, which shows that there is no clear winner.
For instance, our implementation is 170 times faster on BOSCO for
the case n > 5t. However, for the benchmark ABA we experienced
a tenfold slowdown. In our experiments, attempts to improve the
SMT encoding for liveness usually impaired safety results.

Our implementation has verified safety and liveness of all ten
parameterized algorithms in less than a day. Moreover, the tool
reports counterexamples to liveness of CF1S and BOSCO exactly
for the cases predicted by the distributed algorithms literature, i.e.,
when there are not enough correct processes to reach consensus
in one communication step. Noteworthy, liveness of only the two
simplest benchmarks (STRB and FRB) had been automatically
verified before [40].

8. Conclusions
Parameterized verification approaches the problem of verifying
systems of thousands of processes by proving correctness for all
system sizes. Although the literature predominantly deals with
safety, parameterized verification for liveness is of growing interest,
and has been addressed mostly in the context of programs that
solve mutual exclusion or dining philosophers [4, 30, 31, 59]. These
techniques do not apply to fault-tolerant distributed algorithms that
have arithmetic conditions on the fraction of faults, threshold guards,
and typical specifications that evaluate a global system state.

Parameterized verification is in general undecidable [3]. As
recently surveyed by Bloem et al. [9], one can escape undecidability
by restricting, e.g., communication semantics, local state space, the
local control flow, or the temporal logic used for specifications.
Hence, we make explicit the required restrictions. On the one hand,
these restrictions still allow us to model fault-tolerant distributed
algorithms and their specifications, and on the other hand, they give
rise to a practical verification method. The restrictions are on the
local control flow (loops) of processes (Section 2.1), as well as
on the temporal operators and propositional formulas (Section 3).
We conjecture that lifting these restrictions quite quickly leads to
undecidability again. In addition, we justify our restrictions with the
considerable number of benchmarks [11, 12, 14, 21, 37, 52, 61, 63,
64] that fit into our fragment, and with the convincing experimental
results from Figure 11.

Our main technical contribution is to combine and extend several
important techniques: First, we extend the ideas by Etessami et
al. [29] to reason about shapes of infinite executions of lasso
shape. These executions are counterexample candidates. Then we
extend reductions introduced by Lipton [50] to deal with ELTLFT
formulas. (Techniques that extend Lipton’s in other directions can
be found in [19, 22, 25, 34, 44, 47].) Our reduction is specific
to threshold guards which are typical for fault-tolerant distributed
algorithms and are found in domain-specific languages. Using on
our reduction we apply acceleration [6, 44] in order to arrive at our
short counterexample property.

Our short counterexample property implies a completeness
threshold, that is, a bound b that ensures that if no lasso of length up
to b is satisfying an ELTLFT formula, then there is no infinite path
satisfying this formula. For linear temporal logic with the F and G
operators, Kroening et al. [46] prove bounds on the completeness
thresholds on the level of Büchi automata. Their bound involves the
recurrence diameter of the transition systems, which is prohibitively
large for counter systems. Similarly, the general method to transfer
liveness with fairness to safety checking by Biere et al. [8] leads
to an exponential growth of the diameter, and thus to too large
values of b. Hence, we decided to conduct an analysis on the level

of threshold automata, accelerated counter systems, and a fragment
of the temporal logic, which allows us to exploit specifics of the
domain, and get bounds that can be used in practice.

Acceleration has been applied for parameterized verification by
means of regular model checking [1, 10, 58, 62]. As noted by Fisman
et al. [33], to verify fault-tolerant distributed algorithms, one would
have to intersect the regular languages that describe sets of states
with context-free languages that enforce the resilience condition
(e.g., n > 3t). Our approach of reducing to SMT handles resilience
conditions naturally in linear integer arithmetic.

There are two reasons for our restrictions in the temporal
logic: On one hand, in our benchmarks, there is no need to find
counterexamples that contain a configuration that satisfies κ[`] =
0 ∨ κ[`′] = 0 for some `, `′ ∈ L. One would only need such
a formula to specify requirement that at least one process is at
location ` and at least one process is at location `′ (the disjunction
would be negated in the specification), which is unnatural for fault-
tolerant distributed algorithms. On the other hand, enriching our
logic with

∨
i∈Locs κ[i] = 0 allows one to express tests for zero in

the counter system, which leads to undecidability [9]. For the same
reason, we avoid disjunction, as it would allow one to indirectly
express test for zero: κ[`] = 0 ∨ κ[`′] = 0.

The restrictions we put on threshold automata are justified from
a practical viewpoint of our application domain, namely, threshold-
guarded fault-tolerant algorithms. We assumed that all the cycles
in threshold automata are simple (while the benchmarks have only
self-loops or cycles of length 2). As our analysis already is quite
involved, these restrictions allow us to concentrate on our central
results without obfuscating the notation and theoretical results. Still,
from a theoretical viewpoint it might be interesting to relax the
restrictions on cycles in the future.

More generally, these restrictions allowed us to develop a com-
pletely automated verification technique. In general, there is a trade-
off between degree of automation and generality. Our method is
completely automatic, but our input language cannot compete in gen-
erality with mechanized proof methods that rely heavily on human
expertise, e.g., IVY [55], Verdi [68], IronFleet [38], TLAPS [16].

References
[1] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of

systems with unbounded, lossy FIFO channels. In CAV, LNCS, pages
305–318, 1998.

[2] F. Alberti, S. Ghilardi, and E. Pagani. Counting constraints in flat array
fragments. In IJCAR, volume 9706 of LNCS, pages 65–81, 2016.

[3] K. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. IPL, 15:307–309, 1986.

[4] M. F. Atig, A. Bouajjani, M. Emmi, and A. Lal. Detecting fair non-
termination in multithreaded programs. In CAV, pages 210–226, 2012.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press,
2008.

[6] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: acceleration from
theory to practice. STTT, 10(5):401–424, 2008.

[7] M. Biely, P. Delgado, Z. Milosevic, and A. Schiper. Distal: a framework
for implementing fault-tolerant distributed algorithms. In DSN, pages
1–8, 2013.

[8] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety
checking. Electronic Notes in Theoretical Computer Science, 66(2):
160–177, 2002.

[9] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith,
and J. Widder. Decidability of Parameterized Verification. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[10] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In CAV, LNCS, pages 372–386, 2004.

732

165

[11] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. J. ACM, 32(4):824–840, 1985.

[12] F. V. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. Consensus
in one communication step. In PaCT, volume 2127 of LNCS, pages
42–50, 2001.

[13] E. R. Canfield and S. G. Williamson. A loop-free algorithm for
generating the linear extensions of a poset. Order, 12(1):57–75, 1995.

[14] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[15] B. Charron-Bost and S. Merz. Formal verification of a consensus
algorithm in the heard-of model. IJSI, 3(2–3):273–303, 2009.

[16] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety
properties with the TLA+ proof system. In IJCAR, volume 6173 of
LNCS, pages 142–148, 2010.

[17] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[18] E. Clarke, M. Talupur, and H. Veith. Proving Ptolemy right: the
environment abstraction framework for model checking concurrent
systems. In TACAS’08/ETAPS’08, pages 33–47. Springer, 2008.

[19] E. Cohen and L. Lamport. Reduction in TLA. In CONCUR, volume
1466 of LNCS, pages 317–331, 1998.

[20] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
volume 1579 of LNCS, pages 337–340. 2008.

[21] D. Dobre and N. Suri. One-step consensus with zero-degradation. In
DSN, pages 137–146, 2006.

[22] T. W. Doeppner. Parallel program correctness through refinement. In
POPL, pages 155–169, 1977.

[23] C. Drăgoi, T. A. Henzinger, and D. Zufferey. PSync: a partially
synchronous language for fault-tolerant distributed algorithms. In
POPL, pages 400–415, 2016.

[24] C. Drăgoi, T. A. Henzinger, H. Veith, J. Widder, and D. Zufferey. A
logic-based framework for verifying consensus algorithms. In VMCAI,
volume 8318 of LNCS, pages 161–181, 2014.

[25] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In
POPL, pages 2–15, 2009.

[26] E. Emerson and K. Namjoshi. Reasoning about rings. In POPL, pages
85–94, 1995.

[27] E. A. Emerson and V. Kahlon. Model checking guarded protocols. In
LICS, pages 361–370. IEEE, 2003.

[28] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast
protocols. In LICS, pages 352–359. IEEE Computer Society, 1999.

[29] K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two
variables and unary temporal logic. Inf. Comput., 179(2):279–295,
2002.

[30] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with invisible
ranking. STTT, 8(3):261–279, 2006.

[31] A. Farzan, Z. Kincaid, and A. Podelski. Proving liveness of parameter-
ized programs. In LICS, pages 185–196, 2016.

[32] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[33] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance
of distributed protocols. In TACAS, volume 4963 of LNCS, pages
315–331. Springer, 2008.

[34] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
atomicity. IEEE Trans. Softw. Eng., 31(4):275–291, 2005.

[35] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. J. ACM, 39:675–735, 1992.

[36] A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and J. Widder. Tutorial on
parameterized model checking of fault-tolerant distributed algorithms.
In Formal Methods for Executable Software Models, LNCS, pages
122–171. Springer, 2014.

[37] R. Guerraoui. Non-blocking atomic commit in asynchronous dis-
tributed systems with failure detectors. Distributed Computing, 15
(1):17–25, 2002.

[38] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill. Ironfleet: proving practical
distributed systems correct. In SOSP, pages 1–17, 2015.

[39] G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[40] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Parameterized
model checking of fault-tolerant distributed algorithms by abstraction.
In FMCAD, pages 201–209, 2013.

[41] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace:
language support for building distributed systems. In ACM SIGPLAN
PLDI, pages 179–188, 2007.

[42] I. Konnov, H. Veith, and J. Widder. SMT and POR beat counter ab-
straction: Parameterized model checking of threshold-based distributed
algorithms. In CAV (Part I), volume 9206 of LNCS, pages 85–102,
2015.

[43] I. Konnov, M. Lazić, H. Veith, and J. Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed
algorithms. CoRR, abs/1608.05327, 2016. URL http://arxiv.org/
abs/1608.05327.

[44] I. Konnov, H. Veith, and J. Widder. On the completeness of bounded
model checking for threshold-based distributed algorithms: Reacha-
bility. Information and Computation, 2016. Accepted manuscript
available online: 10-MAR-2016. http://dx.doi.org/10.1016/j.
ic.2016.03.006.

[45] I. Konnov, H. Veith, and J. Widder. What you always wanted to know
about model checking of fault-tolerant distributed algorithms. In PSI
2015, Revised Selected Papers, volume 9609 of LNCS, pages 6–21.
Springer, 2016.

[46] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, and J. Worrell. Linear
completeness thresholds for bounded model checking. In CAV, volume
6806 of LNCS, pages 557–572, 2011.

[47] L. Lamport and F. B. Schneider. Pretending atomicity. Technical
Report 44, SRC, 1989.

[48] M. Lesani, C. J. Bell, and A. Chlipala. Chapar: certified causally
consistent distributed key-value stores. In POPL, pages 357–370, 2016.

[49] P. Lincoln and J. Rushby. A formally verified algorithm for interactive
consistency under a hybrid fault model. In FTCS, pages 402–411, 1993.

[50] R. J. Lipton. Reduction: A method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[51] B. D. Lubachevsky. An approach to automating the verification of
compact parallel coordination programs. I. Acta Informatica, 21(2):
125–169, 1984.

[52] A. Mostéfaoui, E. Mourgaya, P. R. Parvédy, and M. Raynal. Evaluating
the condition-based approach to solve consensus. In DSN, pages 541–
550, 2003.

[53] Netflix. 5 lessons we have learned using AWS. 2010. re-
trieved on Nov. 7, 2016. http://techblog.netflix.com/2010/
12/5-lessons-weve-learned-using-aws.html.

[54] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In USENIX ATC, pages 305–320, 2014.

[55] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy:
safety verification by interactive generalization. In PLDI, pages 614–
630, 2016.

[56] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[57] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran. Making
fast consensus generally faster. In DSN, pages 156–167, 2016.

[58] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized
verification. In CAV, LNCS, pages 328–343, 2000.

[59] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,∞)- counter
abstraction. In CAV, volume 2404 of LNCS, pages 93–111. 2002.

733

166

[60] V. Rahli, D. Guaspari, M. Bickford, and R. L. Constable. Formal
specification, verification, and implementation of fault-tolerant systems
using EventML. ECEASST, 72, 2015.

[61] M. Raynal. A case study of agreement problems in distributed systems:
Non-blocking atomic commitment. In HASE, pages 209–214, 1997.

[62] V. Schuppan and A. Biere. Liveness checking as safety checking for
infinite state spaces. Electronic Notes in Theoretical Computer Science,
149(1):79–96, 2006.

[63] Y. J. Song and R. van Renesse. Bosco: One-step Byzantine asyn-
chronous consensus. In DISC, volume 5218 of LNCS, pages 438–450,
2008.

[64] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Dist. Comp., 2:80–94, 1987.

[65] TLA. TLA+ toolbox. http://research.microsoft.com/en-us/
um/people/lamport/tla/tools.html.

[66] M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In LICS, pages 322–331, 1986.

[67] K. von Gleissenthall, N. Bjørner, and A. Rybalchenko. Cardinalities
and universal quantifiers for verifying parameterized systems. In PLDI,
pages 599–613, 2016.

[68] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. In PLDI, pages 357–368, 2015.

734

167

168

Part III

Parameterized Synthesis of

Threshold-Guarded Distributed

Algorithms

169

Chapter 7

Synthesis of Distributed Algorithms with Pa-

rameterized Threshold Guards

Marijana Lazić, Igor Konnov, Josef Widder, and Roderick Bloem. Syn-
thesis of Distributed Algorithms with Parameterized Threshold Guards.
OPODIS, pp. 32:1-32:20, 2017.

doi: http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32

171

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32

Synthesis of Distributed Algorithms with
Parameterized Threshold Guards∗

Marijana Lazić1, Igor Konnov2, Josef Widder3, and
Roderick Bloem4

1 TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
lazic@forsyte.at

2 TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
konnov@forsyte.at

3 TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
widder@forsyte.at

4 TU Graz, Inffeldgasse 16a/II, 8010 Graz, Austria
roderick.bloem@iaik.tugraz.at

Abstract
Fault-tolerant distributed algorithms are notoriously hard to get right. In this paper we introduce
an automated method that helps in that process: the designer provides specifications (the problem
to be solved) and a sketch of a distributed algorithm that keeps arithmetic details unspecified.
Our tool then automatically fills the missing parts.

Fault-tolerant distributed algorithms are typically parameterized, that is, they are designed
to work for any number n of processes and any number t of faults, provided some resilience
condition holds; e.g., n > 3t. In this paper we automatically synthesize distributed algorithms
that work for all parameter values that satisfy the resilience condition. We focus on threshold-
guarded distributed algorithms, where actions are taken only if a sufficiently large number of
messages is received, e.g., more than t or n/2. Both expressions can be derived by choosing the
right values for the coefficients a, b, and c, in the sketch of a threshold a ·n+b · t+c. Our method
takes as input a sketch of an asynchronous threshold-based fault-tolerant distributed algorithm—
where the guards are missing exact coefficients—and then iteratively picks the values for the
coefficients.

Our approach combines recent progress in parameterized model checking of distributed algo-
rithms with counterexample-guided synthesis. Besides theoretical results on termination of the
synthesis procedure, we experimentally evaluate our method and show that it can synthesize sev-
eral distributed algorithms from the literature, e.g., Byzantine reliable broadcast and Byzantine
one-step consensus. In addition, for several new variations of safety and liveness specifications,
our tool generates new distributed algorithms.

1998 ACM Subject Classification F.3.1 [Logic and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; D.4.5 [Software]: Operating systems: Fault-tolerance,
Verification

Keywords and phrases fault-tolerant distributed algorithms – Byzantine faults – parameterized
model checking – program synthesis

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.32

∗ Supported by: the Austrian Science Fund (FWF) through the National Research Network RiSE (S11403,
S11405, and S11406), project PRAVDA (P27722), and Doctoral College LogiCS (W1255-N23); and by
the Vienna Science and Technology Fund (WWTF) through project APALACHE (ICT15-103). The
computational results presented have been achieved [in part] using the Vienna Scientific Cluster (VSC).

© Marijana Lazić, Igor Konnov, Josef Widder, Roderick Bloem;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

172

32:2 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

1 Introduction

Design and implementation of parameterized fault-tolerant distributed systems are error-prone
tasks. There is a mature theory regarding mathematical proof methods, which found their way
into formal frameworks like I/O Automata [24] and TLA+ [22]. Recent approaches [17, 23, 31]
provide tool support to establish correctness of implementations, by manually constructing
proofs with an interactive theorem prover. Although, if successful, this approach provides
a machine-checkable proof [9, 4], it requires huge manual efforts from the user. A logic for
distributed consensus algorithms in the HO Model [8] was introduced in [13], which allows
one to automatically check the invariants (for safety) and ranking functions (for liveness),
that is, the manual effort is reduced to finding right invariants and ranking functions. Model
checking of distributed algorithms promises a higher degree of automation. For consensus
algorithms in the HO Model, the results of [25] reduce the verification to checking small
systems of five or seven processes. For the asynchronous model, an efficient model checking
technique for threshold-guarded distributed algorithms was introduced in [20, 19]. Notably,
this technique verifies both safety and liveness properties. In all these methods, the user has
to produce an implementation (or design), and the goal is to check (using techniques that
vary in the degree of automation) whether this implementation satisfies a given specification.

In this paper we explore synthesis as it promises even more automation. The user
just provides required properties and a sketch of an asynchronous algorithm, and our tool
automatically finds a correct distributed algorithm. In this way we generate new fault-tolerant
algorithms that are correct by construction. In our experiments we first focus on existing
specifications [29, 7, 30, 28] from the literature, in order to be able to compare the output
of our tool with known algorithms. We then give new variations of safety and liveness
specifications, and our tool generates new distributed algorithms for them.

Parametrized synthesis. Similar to the verification approaches above, we are interested in
the parameterized version of the problem: Rather than synthesizing a distributed algorithm
that consists of, say, four processes and tolerates one fault, our goal is to synthesize an
algorithm that works for n processes, out of which t may fail, for all values of n and t that
satisfy a resilience condition, e.g., n > 3t. This is in contrast to recent work on synthesis
of fault-tolerant distributed algorithms [16, 15, 14] that requires the user to fix the number
of processes; typically to some n < 10. In some special cases, manual arguments or cut-off
theorems generalize synthesis results for small systems to parameterized ones [5, 12, 26].
However, similar to parameterized verification [2, 6], the parameterized synthesis problem is
in general undecidable [18]. As in the parameterized verification approach of [19], we will
therefore limit ourselves to a specific class of distributed algorithms, namely, threshold-guarded
distributed algorithms. These thresholds are arithmetic expressions over parameters, e.g., n/2,
and determine for how many messages processes should wait (a majority in the example).

More specifically, the user provides as input a distributed algorithm with holes as in
Figure 1: The user defines the control flow, and keeps the threshold expressions—noted as
τ0toSE and τAC in the figure—unspecified. As pseudo code has no formal semantics, it cannot
be used as a tool input. Rather, our tool takes as input a sketch threshold automaton.

I Example 1. Figure 1 is a pseudo code representation of the input, and Figure 2 shows
the corresponding sketch threshold automaton; they are related as follows. The initial
locations `0 and `1 of the sketch threshold automaton in Figure 2 correspond to initial states
in Figure 1 where myval is equal to 0 and 1, respectively. Edges are labeled by g 7→ act,
where expression g is a threshold guard, and the action act may increment a shared variable.

173

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:3

� �
Code of a correct process i:
var myvali ∈ {0, 1}
var accepti ∈ {false, true} ← false

whi le true do (in one step)
i f myvali = 1
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τ0toSE
d i s t i n c t p r o c e s s e s
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τAC
d i s t i n c t p r o c e s s e s

then accepti ← true
od� �

Figure 1 A single-round version of
the reliable broadcast algorithm [29]
with holes

`0

`1
`SE `ACr′

1 : true 7→ echos++

r′
2 : echos + f ≥ τAC 7→ echos++

r′
3 : echos + f ≥ τ0toSE

7→ echos++

r′
4 : echos + f ≥ τAC 7→ echos++

r′
5 : echos + f ≥ τAC

Figure 2 A sketch threshold automaton

`0

`1
`SE `ACr1 : true 7→ echos++

r2 : echos + f ≥ n− t 7→ echos++

r3 : echos + f ≥ t+ 1
7→ echos++

r4 : echos + f ≥ n− t 7→ echos++

r5 : echos + f ≥ n− t

Figure 3 A synthesized threshold automaton

The action echos++ corresponds to the pseudo-code statement: send <echo> to all. (The
message buffers are replaced by a shared variable that is increased whenever a message is sent.
This typically can be done for algorithms that only count messages, and do not distinguish
the senders. For instance, a bisimulation between models with message buffers and shared
variables was proven in [21].) By going to local state `SE, a process records that it has sent
echo. Finally, by going to the local state `AC, a process records that it has set accept to true.
The “+f” terms in threshold guards model that messages from up to f Byzantine processes
may be received (f ≤ t), while we model only the n− f correct processes explicitly.

We use self loops to capture the behavior that processes may take arbitrarily many steps
before receiving a message sent to them, that is, asynchronous communication. For instance,
the self loop in `0 allows processes to stay in `0 even if the guards of the other outgoing
edges evaluate to true. That every message from a correct process is eventually received is a
fairness constraint and is therefore not part of the threshold automaton, but is captured in
the specifications. For instance, such a fairness constraint would be that if echos ≥ n − t,
then every process must eventually leave location `0. (In the fairness constraint, the “+f”
does not appear, because messages from faulty processes are not guaranteed to arrive.)

The “holes” τ0toSE and τAC in Figure 2 are the missing thresholds, which should be linear
combination of the parameters n and t. Therefore τ0toSE has the form ?1 · n + ?2 · t + ?3,
and τAC has the form ?4 · n+ ?5 · t+ ?6. The unknown coefficients ?i, for 1 ≤ i ≤ 6, have to
be found by the synthesis tool. One solution is ?1 = 0, ?2 = 1, ?3 = 1, ?4 = 1, ?5 = −1, and
?6 = 0, that is, τ0toSE = t+ 1 and τAC = n− t. This solution is depicted in Figure 3. /

In addition to a sketch threshold automaton, the user has to provide a specification,
that is, safety and liveness properties the distributed algorithm should satisfy. Based on
these inputs, our tool generates the required coefficients, that is, a threshold automaton as
in Figure 3. The synthesis approach of this paper is enabled by a recent advance [19] in
parameterized model checking of safety and liveness properties of distributed algorithms.

OPODIS 2017

174

32:4 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

generator
a

verifier
XXVy

CEGIS Loop

coefficients

counterexample

sketch + specification + RC

correct distributed algorithm
or “none exists”

Figure 4 The synthesis loop implemented in this paper.

Existing model checking engine. The central idea of the verification approach in [19] is to
formalize a distributed algorithm as counter system defined by a threshold automaton. A state
of a counter system records how many processes are in which local state (e.g., `0, `1, `SE, `AC).
A transition checks the guard and decreases or increases the related process counters. A
transition can be written as a set of constraints in linear integer arithmetic LIA. (Threshold
guards with rational coefficients, e.g., echos > n

2 , can be converted to integer constraints, e.g.,
2 · echos > n.) Thus, one can check for existence of specific executions by using SMT solvers,
which extend SAT solvers (for Boolean satisfiability) with first-order theories, in our case,
LIA. As shown in [20, 19], resilience conditions, executions of threshold-guarded distributed
algorithms, and specifications can be encoded as logical formulas, whose satisfiability can be
checked by solvers such as Z3 [11] and CVC4 [3]. In particular, the queries used in [20, 19]
correspond to counterexamples to a specification: If the SMT solver finds all queries to be
unsatisfiable, the distributed algorithm is correct. Otherwise, if a query is satisfiable, the
SMT solver outputs a satisfying assignment, that is an error trace, called counterexample.

The synthesis approach of this paper. Figure 4 gives an overview of our method that takes
as input (i) a sketch of a distributed algorithm, (ii) a set of safety and liveness specifications,
and (iii) a resilience condition like n > 3t, and produces as output a correct distributed
algorithm, or informs the user that none exist.

We follow the CEGIS approach to synthesis [1], which proceeds in a refinement loop.
Roughly speaking, the verifier starts by picking default values for the missing coefficients—
e.g., a vector of zeroes—and checks whether the algorithm is correct with these coefficients.
Typically this is not the case and the verifier produces a counterexample. By automatically
analyzing this counterexample, the generator learns constraints on the coefficients that are
known to produce counterexamples. The generator gives these constraints to an SMT solver
that generates new values for the coefficients, which are used in a new verifier run. If the
verifier eventually reports that the current coefficients induce a correct distributed algorithm,
we output this algorithm. The theory from [19] then implies correctness of the algorithm.

Termination of synthesis. The remaining theoretical problem that we address in this paper
is termination of the refinement loop: In principle, the generator can produce infinitely many
vectors of coefficients. In case there is no solution (which is typically the case in Byzantine
fault tolerance if n ≤ 3t), the naïve approach from the previous paragraph does not terminate,
unless we restrict the guards to “reasonable” values. In this paper, we require the guards
to lie in the interval [0, n]. We call such guards sane. For instance, although syntactically
the expressions echos ≤ −42n and echos > 2n are threshold guards, they are not sane, while
echos ≥ t+ 1 is sane. We mathematically prove that all sane guards of a specific structure
have coefficients within a hyperrectangle. We call this hypperrectangle a sanity box, and
prove that its boundaries depend only on the resilience condition. Within the sanity box,

175

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:5

there is only a finite number of coefficients, if we restrict them to integers or rationals with a
fixed denominator. We thus obtain a finite search space and a completeness result for the
synthesis loop.

Safety, liveness, and the fraction of faults. We consider the conjunction of safety and
liveness specifications, as these specifications in isolation typically have trivial solutions; e.g.,
“do nothing” is always safe. If just given a safety specification, our tool generates thresholds
like n for all guards, which leads to all guards evaluating to false initially. Hence, no action
can ever be taken, which is a valid solution if liveness is not required.

Besides, our tool treats resilience conditions precisely. On the one hand, given the sketch
from Figure 2, and the resilience condition n > 3t, in a few seconds our tool generates the
threshold automaton in Figure 3. On the other hand, in the case of n ≥ 3t, our tool reports
(also within seconds) that no such algorithm exists, which in fact constitutes an automatically
generated impossibility result for sane thresholds and a fixed sketch.

Experimental evaluation. We extended the tool ByMC [20] with our technique and con-
ducted experiments based on the freely available benchmarks from [20]: folklore reliable
broadcast [7], consistent broadcast [29, 30], and one-step Byzantine asynchronous consensus
BOSCO [28]. For these benchmarks, we replaced the threshold guards by threshold guards
with holes. By experimental evaluation, we show that our method can be used to generate
coefficients even for quite intricate fault-tolerant distributed algorithms that tolerate Byzan-
tine faults. In particular BOSCO proved to be a hard instance. It has to satisfy constraints
derived from different safety an liveness specifications under different resilience conditions
n > 3t, n > 5t, and n > 7t. Our tool is able to derive the three different threshold guards the
algorithm requires. Finally, we give variations of specifications, and synthesize distributed
algorithms from them that have not been produced before.

2 Modelling Threshold-Guarded Distributed Algorithms

Threshold-guarded algorithms are formalized by threshold automata. We recall the notions
of threshold automata [19] and introduce the new concept of sketches. As usual, N0 is the
set of natural numbers including 0, and Q is the set of rational numbers. The set Π is a
finite set of parameter variables that range over N0. Typically, Π consists of three variables:
n for the total number of processes, f for the number of actual faults in a run, and t for
an upper bound on f . The parameter variables from Π are usually restricted to admissible
combinations by a formula that is called a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0. The
set Γ is a finite set that contains shared variables that store the number of distinct messages
sent by distinct (correct) processes, the variables in Γ also range over N0. In the example in
Figure 3, Γ = {echos}. For the variables from Γ, we will use names echos, x, y, etc.

For a set of variables V , a function ν : V → Q is called an assignment; its domain V is
denoted with dom(ν). In this paper, we use Φ, Ψ, and Θ for first-order logic (FOL) formulas;
e.g., when encoding linear integer constraints in SMT. For a FOL formula Φ, we write free(Φ)
for the set of Φ’s free variables, that is, the variables not bound with a quantifier. (For
convenience, we assume that quantified variables have unique names and they are different
from the names of the free variables.) Given an assignment ν : V → Q and a FOL formula Φ,
we define a substitution Φ[ν] as a FOL formula that is obtained from Φ by replacing all the
variables from V ∩ free(Φ) with their values in ν.

OPODIS 2017

176

32:6 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

To introduce sketches of threshold automata—such as in Figure 2—we define unknowns
such as ?1. The set U is a finite set of unknowns that range over Q. For the variables from U ,
we use the names ?1, ?2, etc. We denote the rational values of unknowns with a, b, c, etc.

Generalized threshold guards, or just guards, are defined according to the grammar:

Guard ::= Shared ≥ LinForm | Shared < LinForm Shared ::= 〈variable from Γ〉
LinForm ::= FreeCoeff | Prod | Prod + LinForm Param ::= 〈a variable from Π〉
FreeCoeff ::= Rat | Unknown Unknown ::= 〈a variable from U〉
Prod ::= Rat × Param | Unknown × Param Rat ::= 〈a rational from Q〉

For convenience, we assume that every parameter appears in LinForm at most once. Let π̄
denote the vector (π1, . . . , π|Π|, 1) that contains all the parameter variables from Π in a fixed
order as well as number 1 as the last element. Then, every generalized guard can be written
in one of the two following forms x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ, where x is a shared variable
from Γ, and ū is a vector of elements from U ∪Q. When a parameter does not appear in a
generalized guard, its corresponding component in ū equals zero. We say that a guard is a
sketch guard if its vector ū contains a variable from U . A guard that is not a sketch guard is
called a fixed guard. Previous work [19] was only concerned with fixed guards.

Since threshold guards are a special case of FOL formulas, we can apply substitutions
to them. For instance, given an assignment ν : U → Q and a threshold guard g, the
substitution g[ν] replaces every occurence of an unknown ?i ∈ U in g with the rational ν(?i).

Threshold automata, denoted by TA, are edge-labeled graphs, where vertices are called
locations, and edges are called rules. Rules are labeled by g 7→ act, where expression g is
a fixed threshold guard, and the action act may increment a shared variable. We define
generalized threshold automata GTA, in the same way as threshold automata, with the only
difference that expressions g in the edge labeling are generalized threshold guards. If all
generalized guards in a GTA are fixed, then that GTA is a TA. If at least one of the edges of
a GTA is labeled by a sketch guard, then we call this automaton a sketch threshold automaton,
and we denote it by STA. Given an STA and an assignment ν : U → Q, we obtain a threshold
automaton STA[ν] by applying substitution g[ν] to every sketch guard g in STA.

Counter systems. Executions of threshold automata are formalized as counter systems.
Since processes just wait for messages until a threshold is reached and do not distinguish the
senders, the systems we consider are symmetric. This allows us to represent a global state—
a configuration—by (process) counters: Instead of recording which process is in which local
state (which is done typically in distributed algorithms theory), we capture for each local
state, how many processes are in it, and then use the rules of the threshold automaton
to define the transitions between configurations. In the following, we quickly sketch the
semantics to the extent necessary for this paper. Complete definitions can be found in [19].

For every TA we define a counter system as a transition system. First, for every location `
we introduce a counter κ[`] that keeps track of the number of processes in that particular
location. A configuration σ is defined as an assignment of all counters of locations, all shared
variables from Γ, and all parameters from Π, that respects the resilience condition. If a
rule r is an edge (`, `′) of a TA, then a transition (r,m) represents m processes moving
from the location ` to `′. We call m the acceleration factor. If m = 1 for all transitions in
an execution, we get asynchronous executions where one process moves at a time, that is,
interleaving semantics. If the rule r has a label g 7→ act, then (r,m) can be applied only in

177

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:7

a configuration in which the counter κ[`] has a value at least m, and g evaluates to true, and
remains true during m− 1 applications of act. In other words, only if the threshold from g

is reached, and there are enough processes in location `; see [19] for details. After executing
the transition (r,m), counters are updated such that κ[`] is decreased by m and κ[`′] is
increased by m, and shared variables are updated according to the action act, m times.

I Example 2. Consider the TA from Figure 3. One configuration is the following: parameters
are n = 7, f = t = 2, satisfying resilience condition n > 3t ≥ 0 ∧ f ≤ t, counters have values
κ[`0] = 2, κ[`SE] = 3, κ[`1] = κ[`AC] = 0 and shared variable echos = 3. (As we only model
correct process explicitly, the counters add up to n− f = 5.) As in this configuration we have
that echos+f = 5 ≥ 5 = n− t, and κ[`0] = 2, we can execute transition (r2, 2). The obtained
configuration has the same parameter values, but counters are changed: κ[`0] = κ[`1] = 0
and κ[`SE] = 3, and κ[`AC] = 2. Also, as the action of the rule r2 is echos++, and two processes
are moving along this edge, then the new value of echos is 5. /

With a TA we associate a set of predicates PTA that track properties of the system states.
The set PTA consists of the TA’s threshold guards and a test κ[`] = 0 for every location ` in TA.
For every configuration σ, one can compute the set ρ(σ) ⊆ PTA of the predicates that hold
true in σ. As was demonstrated in [19], the predicates from PTA and linear temporal logic
are sufficient to express the safety and liveness properties of threshold-guarded distributed
algorithms found in the literature. Essentially, the test κ[`] = 0 evaluates to true if no process
is in location `, and κ[`] 6= 0 evaluates to true if there is at least one process at `. That
all processes are in specific locations can be expressed by a condition that states that “no
processes are in the other locations”, that is, as a Boolean combination of tests for zero. We
include the threshold guards in PTA to be able to express the fairness properties such as: if
echos ≥ t+ 1, then every process should eventually make one of the transitions labelled with
echos + f ≥ t+ 1. Examples of such properties for our benchmarks are given in Section 5.

A system execution is expressed as a path in the counter system. Formally, a path is an
infinite alternating sequence of configurations and transitions, that is, σ0, t1, σ1, . . . , ti, σi, . . . ,
where σ0 is an initial configuration, and σi+1 is the result of applying ti+1 to σi for i ≥ 0. The
infinite sequence ρ(σ0), ρ(σ1), . . . is called the path trace. With TracesTA we denote the set of
all path traces in the TA’s counter system. Correctness of a distributed algorithm then means
that all traces in TracesTA satisfy a specification expressed in linear temporal logic [10]. The
verification approach from [19] discussed in Section 3 specifically looks for traces that violate
the specification. Such traces are characterized by the temporal logic ELTLFT that allows
one to express negations of specifications relevant for fault-tolerant distributed algorithms.

3 Verification machinery

In [19] we introduced a technique for parameterized verification of threshold-based distributed
algorithms. Given a fixed threshold automaton TA, a resilience condition RC, and a set
{¬ϕ1, . . . ,¬ϕk} of ELTLFT formulas representing negation of specifications, we check whether
there is an execution violating the specification (ϕ1 ∧ . . . ∧ ϕk). Thus, as an output, the
algorithm from [19] either confirms correctness, or gives a counterexample. In this paper, we
use this technique as a black box, that is, we assume that there is a function

verifyByMC(TA, RC, {¬ϕ1, . . . ,¬ϕk})

that either reports a counterexample, or that TA is correct. As our synthesis approach learns
from counterexamples, we recall the form of the counterexamples reported by the verifier.

OPODIS 2017

178

32:8 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Representative executions and schemas. The idea of [19] lies in automatically computing
length and structure of representative executions in advance, whose shape we call schemas.
A schema is an alternating sequence of contexts (sets of guards) and sequences of rules.
Precise definition of a schema and its encoding can be found in [20, 19]. Intuitively, a
schema is a concatenation of multiple simple schemas. A simple schema has the form
{g1, . . . , gk} r1 . . . rs {g′1, . . . , g′k′}, where k, k′, s ∈ N, g1, . . . , gk, g

′
1, . . . , g

′
k′ are guards, and

r1, . . . , rs are rules. Given acceleration factors mi, 1 ≤ i ≤ s, such that 0 ≤ mi ≤ n, the
simple schema generates an execution where all the guards g1, . . . , gk hold in its initial
configuration, and after executing (r1,m1), . . . , (rs,ms), we arrive in a configuration where
all the guards g′1, . . . , g′k′ hold. As proven in [19], specific schemas of fixed length represent
infinite executions (that end in an infinite loop) as required for counterexamples to liveness.

Our verification tool considers each schema in isolation, and basically searches for an
evaluation ν of the parameters (n, t, f), an initial configuration (values of counters of
initial local states), and all the acceleration factors, such that the resulting execution is
admissible (only enabled rules are executed, etc.). Such an execution— if found—constitutes
a counterexample, and the tool reports the corresponding pair (schema, ν).

Solver. Our tool encodes a schema as an SMT formula over parameters, counters of local
states, global variables, and acceleration factors. This formula is a conjunction of equalities
and inequalities in linear integer arithmetic. Inequalities come from guards, and have
shared variables and parameters as free variables. Equalities come from transitions, as every
transition is encoded as updating counters of local states and shared variables. The tool
ByMC [19] calls an SMT solver to check satisfiability of the formula.

4 Synthesis

Synthesis problem. A temporal logic formula ϕ in ELTLFT describes an (infinite) set of
bad traces that the synthesized algorithm must avoid. Therefore, we consider the following
formulation of the synthesis problem. Given a sketch threshold automaton STA and an
(infinite) set of bad traces TracesBad, either:

find an assignment µ : U → Q, in order to obtain the fixed threshold automaton STA[µ]
whose traces TracesSTA[µ] do not intersect with TracesBad, or
report that no such assignment exists.

Our approach is to find values for the unknowns in a synthesis refinement loop and test them
with the verification technique from Section 3.

Synthesis loop. Figure 5 shows the pseudo-code of the synthesis procedure syntByMC. At
its input the procedure receives a sketch threshold automaton STA, a resilience condition,
and a set of ELTLFT formulas {¬ϕ1, . . . ,¬ϕk}, which capture the bad traces TracesBad. In
line 2, formula Θ0, which captures constraints on the unknowns from U , is initialized using a
function boundU . In principle, boundU can be initialized to true (no constraints). However,
to ensure termination, we will discuss later in this section, how we obtain constraints that
bound the coefficients of sane guards. After initialization we enter the synthesis loop.

The SMT solver checks whether Θi has a satisfying assignment to the unknowns in U
(line 4). If Θi is unsatisfiable, the loop terminates with a negative outcome in line 5. Otherwise,
the SMT solver gives us an assignment µ : U → Q that is a solution candidate. To check
feasibility of µ, the verifier is called for the fixed threshold automaton STA[µ] in line 7. The
verifier generates multiple schemas, each being one SMT query, which are checked either

179

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:9

1 procedure syntByMC(STA, RC, {¬ϕ1, . . . ,¬ϕk})
2 Θ0 := boundU (RC) and i := 0
3 while (true)
4 call checkSMT(Θi)
5 case unsat ⇒ print ’no more solutions’ and exit()
6 case sat(µ) ⇒ /∗ µ assigns rationals to the variables in U ∗/
7 call verifyByMC(STA[µ], RC, {¬ϕ1, . . . ,¬ϕk})
8 case correct ⇒
9 print ’solution µ’ /∗ exclude this solution and continue ∗/

10 Θi+1 := Θi ∧
∨

?j ∈U
?j 6= µ[?j] and i := i+1

11 case counterexample(S, ν) ⇒ /∗ dom(ν) ∩ U = ∅ ∗/
12 SU := generalize(S, STA)
13 Ψ := formulaSMT(SU)
14 Θi+1 := Θi ∧ ¬Ψ[ν] and i := i+1

Figure 5 Pseudo-code of the synthesis loop

sequentially or in parallel. If the verifier reports that a schema that produces a counterexample
does not exist, then the candidate assignment µ and threshold automaton STA[µ] give us
a solution to the synthesis problem. If we were interested in just one solution, the loop
would terminate here with a positive outcome. However, because we want to enumerate all
solutions, our function does a complete search, such that we exclude the solution µ for the
future search in line 10, and continue.

If the verifier finds a counterexample, the loop proceeds with the branch in line 11. A
counterexample is a schema S of STA[µ] and a satisfying assignment ν : V → Q to the
free variables V of the SMT formula formulaSMT, which include the parameters Π, shared
variables xj for x ∈ Γ, and counters κj [`] for each local state ` ∈ L and every configuration j.
In principle, we could exclude µ from consideration similar to line 10. For efficiency, we want
to exclude a larger set of evaluations, namely all that lead to the same counterexample: We
produce a generalized schema SU , by replacing the rules and guards in S, which belong to the
threshold automaton STA[µ] with the rules and guards of the sketch threshold automaton STA
(line 12). In line 13, we generate a generalized counterexample Ψ. As Ψ is derived from a
counterexample with valuations µ and ν, we know that Ψ[ν][µ] is true. Further, for every
evaluation of the unknowns µ′, if Ψ[ν][µ′] is true, then Ψ[ν][µ′] is a counterexample. To
exclude all these evaluations µ′ at once, we conjoin ¬Ψ[ν] with Θi in line 14, which gives us
new constraints on the unknowns, before entering the next loop iteration.

The synthesis loop terminates only in line 5, that is, if Θi is unsatisfiable. As, in this case,
Θi is equivalent to false, the following observation guarantees that all satisfying assignments
of Θ0 have been explored and all solutions (if any exists) have been reported.
I Observation 1. At the beginning of every iteration i ≥ 0 of the synthesis loop in lines 3–14,
the following invariant holds: if µ : U → Q is a satisfying assignment of formula Θ0 ∧ ¬Θi,
then either: (1) µ was previously reported as a solution in line 9, or (2) µ was previously
excluded in line 14 and thus is not a solution. /

Completeness and termination for sane guards. Without restricting Θ0, the search space
for coefficients is infinite. In the following, we show that restricting the synthesis problem to
sane guards bounds the search space.

The role of threshold guards is typically to check whether the number of distinct senders,
from which messages are received, reaches a threshold. We also use threshold guards in our

OPODIS 2017

180

32:10 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

models to bound the number of processes that go into a special crash state. In both cases,
one counts distinct processes and it is therefore natural to consider only those thresholds
whose value is in [0, n]. More precisely, if the guard has a form x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ, then
for all parameter values that satisfy resilience condition it holds that 0 ≤ ū · π̄ᵀ ≤ n. We call
such guards sane for a given resilience condition.

Theorem 3 considers a general case of hybrid failure models [30] where different failure
bounds exist for different failure models (e.g., t1 Byzantine faults and t2 crash faults), and
these failure bounds are related to the number of processes n by a resilience condition1 of
the form n >

∑k
i=1 δiti ∧ ∀i. ti ≥ 0. We bound the values of the coefficients of sane guards.

I Theorem 3. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where k ∈ N, δi ∈ Q

and δi > 0, for 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ an+ (b1t1 + . . .+ bktk) + c or x < an+ (b1t1 + . . .+ bktk) + c,

where x ∈ Γ, and a, b1, . . . , bk, c ∈ Q. If the guard is sane for the resilience condition, then

0 ≤ a ≤ 1, (1)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (2)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (3)

The case when k = 1 gives us the classical resilience condition where the system model
assumes one type of faults (e.g., crash), and the assumed number of faults t is related to
the total number of processes n, by a condition n > δt ≥ 0 for some δ > 0. If the guard
that compares a shared variable and an+ bt+ c is sane for the resilience condition, then we
obtain that 0 ≤ a ≤ 1, −δ − 1 < b < δ + 1, and −2δ − 2 ≤ c ≤ 2δ + 2. Any restriction of
the intervals from Theorem 3 to finite sets gives us completeness: If we reduce the domain
of variables from U to integers, or to rationals with fixed denominator (e.g., z

10 for z ∈ Z),
one reduces the search space to a finite set of valuations. All threshold-based distributed
algorithms we are aware of, use guards with coefficients that are either integers or rationals
with a denominator not greater than 3. Thus, we restrict our intervals by intersecting them
with the set of rational numbers whose denominator is at most D, for a given D ∈ N.

The following corollary is a direct consequence of Theorem 3, and it tells us how to modify
intervals if the coefficients are rational numbers with a fixed denominator.

I Corollary 4. Let n >
∑k
i=1 δiti ∧ ∀i. ti ≥ 0 be a resilience condition, where k ∈ N, δi ∈ Q

and δi > 0, 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
or x <

ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
,

where x ∈ Γ, ã, b̃1, . . . , b̃k, c̃ ∈ Z, D ∈ N. If the guard is sane for the resilience condition then

0 ≤ ã ≤ D, (4)
D(−δi − 1) < b̃i < D(δi + 1), for all i = 1, . . . , k, (5)

D(−2(δ1 + . . .+ δk)− k − 1) ≤ c̃ ≤ D(2(δ1 + . . .+ δk) + k + 1). (6)

1 Because a guard that is sane for a weaker resilience condition, is also sane for a stronger one,
Theorem 3 and Corollary 4 also hold for any resilience condition that follows from this one, e.g.,
n > max{δ1t1, . . . , δktk} ∧ ∀i. ti ≥ 0. We can use the same intervals, confirmed by the same proofs as
in Appendix A. However, our benchmarks use the form of resilience conditions of Theorem 3.

181

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:11

`0

`1

`AC `CR

φAC 7→ send

φCR 7→ nc++

φCR 7→
nc++

φCR 7→ nc++, sendF
true 7→

send
φCR 7→ nc++

Figure 6 A sketch threshold automa-
ton for folklore reliable broadcast

`0

`1

`SE

`AC `CRφ0toSE 7→ send

φAC 7→ send

φCR 7→ nc++

true 7→ send

φCR 7→ nc++

φCR 7→
nc++, sendF

φAC 7→ send

φAC

φCR 7→ nc++

φCR 7→ nc++

Figure 7 A sketch threshold automaton for reliable
broadcast with Byzantine and crash faults

Constraints (4)–(6) constitute the sanity box that function boundU computes in Figure 5.
By fixing D, we restrict Θ0 to have finitely many satisfying assignments (integers). Hence,
the loop terminates. Statements similar to Theorem 3 and Corollary 4 can be derived for
other forms of threshold guards, e.g., for thresholds with floor or ceiling functions.2

5 Case Studies and Experiments

We have extended ByMC [20, 19] with the synthesis technique presented in this paper. A
virtual machine with the tool and the benchmarks is available from: http://forsyte.at/
software/bymc.3 ByMC is written in OCaml and uses Z3 [11] as a backend SMT solver.
We ran the experiments on two systems: a laptop and the Vienna Scientific Cluster (VSC-3).
The laptop is equipped with 16 GB of RAM and Intel® Core™ i5-6300U processor with
4 cores, 2.4 GHz. The cluster VSC-3 consists of 2020 nodes, each equipped with 64 GB
of RAM and 2 processors (Intel® Xeon™ E5-2650v2, 2.6 GHz, 8 cores) and is internally
connected with an Intel QDR-80 dual-link high-speed InfiniBand fabric: http://vsc.ac.at.

We synthesize thresholds for asynchronous fault-tolerant distributed algorithms. We
consider reliable broadcast and fast decision for a consensus algorithm. In the case of reliable
broadcast we consider different fault models, namely, crashes [7] and Byzantine faults [29], as
well as a hybrid fault model [30] with both, Byzantine and crash failures. For fast decision,
we consider the one-step consensus algorithm BOSCO for Byzantine faults [28].

Reliable broadcast for crash and/or Byzantine failures. Figure 7 shows a sketch threshold
automaton of a reliable broadcast that should tolerate fc ≤ tc crash and fb ≤ tb Byzantine
faults under the resilience condition n > 3tb + 2tc. For our experiments under simpler failure
models—only Byzantine and crash faults—we use the sketch threshold automata from
Figures 2 and 6. However, the same thresholds can be obtained by setting tc = fc = 0 and
tb = fb = 0 in the automaton from Figure 7, respectively. In Figure 2, we do not need a
dedicated crash state, as we only model correct processes explicitly, while Byzantine faults
are modeled via the guards (cf. Example 1). The automaton from Figure 6 can be obtained
from Figure 7 by removing the location `SE.

2 Theorem 6 and Corollary 7 in Appendix B consider floor and ceiling functions. Our benchmarks do not
make use of such thresholds.

3 See http://forsyte.at/opodis17-artifact/ for detailed instructions on using the tool.

OPODIS 2017

182

32:12 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Table 1 Synthesized solutions for reliable broadcast that tolerates: crashes (Figure 6), Byzantine
faults (Figure 2), and Byzantine & crash faults (Figure 7). We used the laptop in the experiments.

Resilience condition Specs #Solutions Threshold τ0toSE Threshold τAC
Calls to
verifier

Time,
seconds

n > tc, tb = 0 U, C, R 1 true 1 12 6

n > 3tb, tc = 0 U, C, R 3
n− 2tb
tb + 1
tb + 1

n− tb
2tb + 1
n− tb

31 16

n ≥ 3tb, tc = 0 U, C, R None — — 25 7

n > 3tb + 2tc U, C, R 3
n− 2tb − 2tc

tb + 1
tb + 1

n− tb − tc
2tb + tc

n− tb − tc
34 50

n ≥ 3tb + 2tc U, C, R None — — 21 12
n > 3tb + tc U, C, R None — — 29 24

The algorithms we consider are the core of broadcasting algorithms, and establish
agreement on whether to accept the message by the broadcaster. Similar to Example 1,
processes start in locations `1 and `0, which capture that the process has received and has
not received a message by the broadcaster, respectively. A correctly designed algorithm
should satisfy the following properties [29]:
(U) Unforgeability: If no correct process starts in `1, then no correct process ever enters `AC.
(C) Correctness: If all correct processes start in `1, then there exists a correct process that

eventually enters `AC.
(R) Relay: Whenever a correct process enters `AC, all correct processes eventually enter `AC.

In the following discussion we use Figure 7 as example. We have to sketch the guards φCR,
φ0toSE, and φAC. At most fc processes can move to the crashed state `CR. The algorithm
designer does not have control over the crashes, and thus we fix the guard φCR to be nc < fc:
The shared variable nc maintains the actual number of crashes (initially zero), which is
used only to model crashes and thus cannot be used in guards other than φCR. To properly
model that a processes can crash during a “send to all” operation (non-clean crash), we
introduce two shared variables: the variable echos stores the number of echo messages that
are sent by the correct processes (some of them may crash later), and the variable echosCF
stores the number of echo messages that are sent by the correct processes and the faulty
processes when crashing. Hence, the action send increases both echos and echosCF, whereas
the action sendF increases only echosCF.

We define the thresholds τ0toSE and τAC as (?SE
a · n + ?SE

b · tb + ?SE
c · tc + ?SE

d) and
(?AC
a · n + ?AC

b · tb + ?AC
c · tc + ?AC

d) respectively. Hence, φ0toSE and φAC are defined as
echosCF + fb ≥ τ0toSE and echosCF + fb ≥ τAC. As discussed in the introduction, we add fb
to echosCF to reflect that the correct processes may—although do not have to—receive
messages from Byzantine processes. For reliable communication, we have to enforce:

Every correct process eventually receives at least echos messages. (RelComm)

As threshold automata do not explicitly store the number of received messages, we
transform (RelComm) into a fairness constraint, which forces processes to eventually leave a
location if the messages by correct processes alone enable a guard of an edge that is outgoing
from this location. That is, there is a time after which the following holds forever:

κ[`1] = 0 ∧ (echos < τ0toSE ∨ κ[`0] = 0) ∧ (echos < τAC ∨ (κ[`0] = 0 ∧ κ[`SE] = 0)). (Fair)

183

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:13

Table 2 Synthesized solutions for variations of reliable broadcast and specifications (X)–(Z).

Resilience condition Specs #Solutions Threshold τ0toSE Threshold τAC
Calls to
verifier

Time,
seconds

n > 3tb, tc = 0 X, C, R None — — 15 2

n > 3tb + 2, tc = 0 X, C, R 3
n− 2tb
tb + 3
tb + 3

n− tb
2tb + 3
n− tb

35 12

n > 3tb, tc = 0 Y, C, R None — — 28 6

n > 4tb, tc = 0 Y, C, R 3
n− 2tb
2tb + 1
2tb + 1

n− tb
3tb + 1
n− tb

33 12

n > 3tb + 2tc U, Z, R 2 tb + 1
tb + 1

n− tb − tc
2tb + tc + 1 41 31

Table 1 summarizes the experimental results for reliable broadcast, when looking for
integer solutions only. The cases tb = 0 and tc = 0 correspond to the algorithms that tolerate
only crashes (Figure 6) and only Byzantine faults (Figure 2) respectively. For these cases,
we obtained the solutions known from the literature [29, 7] and some variations. Moreover,
when the resilience condition is changed from n > 3tb to n ≥ 3tb, our tool reports no solution,
which also complies with the literature [29]. In the case of fc crashes and fb Byzantine faults,
the tool reports three solutions. Moreover, when we tried to relax the resilience condition to
n ≥ 3tb + 2tc and n > 3tb + tc, the tool reported that there is no solution, as expected.

Variations of the specification. Our logic allows us to easily change the specifications. For
instance, we can replace the precondition of unforgeability “if no correct process starts in `1”
by giving an upper bound (number or parameter) on correct processes starting in `1 that
still prevents entering `AC, in specifications (X) and (Y). We also changed the precondition
of correctnesss “if all correct processes start in `1” in specification (Z):
(X) If at most two correct processes start in `1, then no correct process ever enters `AC.
(Y) If at most tb correct processes start in `1, then no correct process ever enters `AC.
(Z) If at least tb + tc + 1 non-Byzantine processes (correct or crash faulty) start in `1, then

there exists a correct process that eventually enters `AC.

Interestingly, we obtain new distributed computing problems that put quantitative
conditions on the initial state. These specifications are related to the specifications of
condition-based consensus [27]. Our tool automatically generates solutions, or shows their
absence in the case resilience conditions are too strong. Table 2 summarizes these results.

Byzantine one-step consensus. Figure 8 shows a sketch threshold automaton of a one-
step Byzantine consensus algorithm that should tolerate f ≤ t Byzantine faults under the
assumption n > 3t. It is a formalization of the BOSCO algorithm [28]. The purpose of
the algorithm is to quickly reach consensus if (a) n > 5t and f = 0, or (b) n > 7t. In this
encoding, correct processes make a “fast” decision on 0 or 1 by going in the locations `D0
and `D1, respectively. When neither (a) nor (b) holds, the processes precompute their votes
in the first step and then go to the locations `U0 and `U1, from which an underlying consensus
algorithm is taking over. In this sense, BOSCO can be seen as an asynchronous preprocessing
step for general consensus algorithms, and the properties given below contain preconditions

OPODIS 2017

184

32:14 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

`0

`1

`SE0

`SE1

`D0

`D1

`U0

`U1

true 7→ s0++, s01++

true 7→ s1++, s01++

φA ∧ s0 + f ≥ τD0

φA ∧ s1 + f ≥ τD1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

φA ∧ s1 <
τD0 ∧ s1 <

τD1 ∧ s0 + f ≥ τU0 ∧ s1 <
τU1

Figure 8 A sketch threshold automaton for one-step Byzantine consensus. Labels of dashed
edges are omitted; they can be obtained from the respective solid edges by swapping 0 and 1.

for calling consensus in a safe way (see Fast Agreement below). Every run of a synthesized
threshold automaton must satisfy the following properties (for i ∈ {0, 1} and j = 1− i):
(A) Fast agreement [28, Lemmas 3–4]: Condition κ[`Di] 6= 0 implies κ[`Dj] = κ[`Uj] = 0.
(O) One step: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it always holds that

κ[`Dj] = 0 and κ[`U0] = κ[`U1] = 0. That is, the underlying consensus is never called.
(F) Fast termination: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it eventually

holds that κ[`] = 0 for all local states different from `Di.
(T) Termination: It eventually holds that κ[`0] = κ[`1] = 0 and κ[`SE0] = κ[`SE1] = 0.

We define thresholds τA, τD0, τD1, τU0, τU1 as ?xa ·n+?xb · t+?xc for x ∈ {A,D0,D1,U0,U1}.
Then, the guard φA is defined as: s01 + f ≥ τA. Interestingly, the thresholds appear in
different roles in the guards, e.g., s0 + f ≥ τD0 and s0 < τD0. These cases correspond to
BOSCO’s decisions on how many messages have been received and how many messages have
not been received “modulo Byzantine faults.”

As with reliable broadcast, we model reliable communication with the following fairness
constraint: For i ∈ {0, 1}, from some point on, the following holds: κ[`0] = 0 ∧ κ[`1] =
0 ∧ (s01 < τA ∨ si < τDi ∨ κ[`SEi] = 0).

We bound denominators of rationals with two and use the sanity box provided by
Corollary 4. To reduce the search space, we assume that the guards for 0 and 1 are
symmetric, that is ?D0

a = ?D1
a and ?U0

a = ?U1
a . Still, BOSCO is a challenging benchmark for

verification [19] and synthesis. Since the verification procedure from Section 3 independently
checks schemas with SMT, we parallelized schema checking with OpenMPI, and ran the
experiments at Vienna Scientific Cluster (VSC-3) using 8–128 cores; Table 3 summarizes the
results. The tool has found four solutions for the guards: τA = n−t [− 1

2], τD0 = τD1 = n+3t+1
2 ,

and τU0 = τU1 = n−t
2 [+ 1

2]. In addition to the guards from [28], the tool also reported that
one can add or subtract ½ from several guards. Figure 9 demonstrates that increasing the
number of cores above 64 slows down synthesis times for this benchmark.

Variations of the BOSCO specifications. We relaxed the precondition for fast termination:
(U) If n ≥ 5t ∧ f = 0 and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all

local states different from `Di.

185

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:15

Specs
Nr. of

solutions
Calls to
verifier

Nr. of
cores

Time
min.

AOFT 4 516 128 39
AOFT 4 432 96 25
AOFT 4 425 64 24
AOFT 4 502 16 44
AOFT 4 440 8 51
AOUT 0 376 8 40
AOVT 0 337 8 33
Table 3 Experiments for one-step Byzantine consen-

sus for n > 3t running the parallel verifier at VSC-3

39 min

25 min24 min

31 min

44 min

51 min

Ti
m

e,
 s

ec
.

1500

3000

Number of cores (16 cores per node)
816 32 64 128

Figure 9 Synthesis times for BOSCO
at Vienna Scientific Cluster (VSC-3)

(V) If n ≥ 7t and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all local states
different from `Di.

As can be seen from Table 3, specifications (U) and (V) have no solutions.

6 Discussions

The classic approach to establish correctness of a distributed algorithm is to start with a system
model, a specification, and pseudo code, all given in natural language and mathematical
definitions, and then write a manual proof that confirms that “all fits together.” Manual
correctness proofs mix code inspection, system assumptions, and reasoning about events in
the past and the future. Slight modifications to the system assumptions or the code require
us to redo the proof. Thus, the proofs often just establish correctness of the algorithm,
rather than deriving details of the algorithm— like the threshold guards— from the system
assumption or the specification.

We introduced an automated method that synthesizes a correct distributed algorithm
from the specifications and the basic assumptions. Our tool computes threshold expressions
from the resilience condition and the specification, by learning the constraints that are
derived from counterexamples. Learning dramatically reduces the number of verifier calls. In
case of BOSCO, the sanity box contains 236 vectors of unknowns, which makes exhaustive
search impractical, while our technique only needs to check approximately 500 vectors.

In addition to synthesizing known algorithms from the literature, we considered several
modified specifications. For some of them, our tool synthesizes thresholds, while for others it
reports that no algorithm of a specific form exists. The latter results are indeed impossibility
results (lower bounds on the fraction of correct processes) for fixed sketch threshold automata.

To ensure termination of the synthesis loop, we restrict the search space, and thus the
class of algorithms for which the impossibility result formally applies. First, while we restrict
the search to sane guards, the same synthesis loop can also be used to synthesize other
guards. However, in order to ensure termination, a suitable characterization of sought-after
guards should be provided by the user. Second, for reliable broadcast we consider only
threshold guards with integer coefficients that can express thresholds like n− t or 2t+ 1. For
BOSCO, we only allow division by 2, and can express thresholds like n

2 or n−t
2 . While from

a theoretical viewpoint these restrictions limit the scope of our results, we are not aware of
a distributed algorithm where processes wait for messages from, say, n7 or n

1000 processes.
To strengthen our completeness claim, we would need to formally explain why only small
denominators are used in fault-tolerant distributed algorithms.

OPODIS 2017

186

32:16 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

References
1 Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,

Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In FMCAD, pages 1–8, 2013.

2 K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
IPL, 15:307–309, 1986.

3 Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, pages 171–177, 2011.

4 Benjamin Bisping, Paul-David Brodmann, Tim Jungnickel, Christina Rickmann, Henning
Seidler, Anke Stüber, Arno Wilhelm-Weidner, Kirstin Peters, and Uwe Nestmann. A con-
structive proof for FLP. Archive of Formal Proofs, 2016.

5 Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis of self-stabilising and
Byzantine-resilient distributed systems. In CAV, volume 9779 of LNCS, pages 157–176,
2016.

6 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith,
and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers, 2015.

7 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

8 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

9 Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety
properties with the TLA+ proof system. In IJCAR, volume 6173 of LNCS, pages 142–148,
2010.

10 Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999.

11 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, volume
1579 of LNCS, pages 337–340. 2008.

12 Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen, Christoph Lenzen, Joel
Rybicki, Jukka Suomela, and Siert Wieringa. Synchronous counting and computational
algorithm design. J. Comput. Syst. Sci., 82(2):310–332, 2016.

13 Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey.
A logic-based framework for verifying consensus algorithms. In VMCAI, volume 8318 of
LNCS, pages 161–181, 2014.

14 Fathiyeh Faghih and Borzoo Bonakdarpour. SMT-based synthesis of distributed self-
stabilizing systems. TAAS, 10(3):21:1–21:26, 2015.

15 Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien Tixeuil, and Sandeep S. Kulkarni.
Specification-based synthesis of distributed self-stabilizing protocols. In FORTE, volume
9688 of LNCS, pages 124–141, 2016.

16 Adrià Gascón and Ashish Tiwari. A synthesized algorithm for interactive consistency. In
NFM, volume 8430 of LNCS, pages 270–284. Springer, 2014.

17 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving safety and liveness of practical
distributed systems. Commun. ACM, 60(7):83–92, June 2017.

18 Swen Jacobs and Roderick Bloem. Parameterized synthesis. LMCS, 10(1:12), 2014.
19 Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short counterexample

property for safety and liveness verification of fault-tolerant distributed algorithms. In
POPL, pages 719–734, 2017.

187

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:17

20 Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter abstraction:
Parameterized model checking of threshold-based distributed algorithms. In CAV (Part I),
volume 9206 of LNCS, pages 85–102, 2015.

21 Igor Konnov, Josef Widder, Francesco Spegni, and Luca Spalazzi. Accuracy of message
counting abstraction in fault-tolerant distributed algorithms. In VMCAI, pages 347–366,
2017.

22 Leslie Lamport. Specifying systems: The TLA+ language and tools for hardware and
software engineers. Addison-Wesley, 2002.

23 Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified causally consistent
distributed key-value stores. In POPL, pages 357–370, 2016.

24 Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
25 Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff bounds for consensus

algorithms. In CAV, pages 217–237, 2017.
26 Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and Sébastien Tixeuil. On the

synthesis of mobile robots algorithms: The case of ring gathering. In SSS, volume 8756 of
LNCS, pages 237–251, 2014.

27 Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Raynal. Evalu-
ating the condition-based approach to solve consensus. In DSN, pages 541–550, 2003.

28 Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asynchronous con-
sensus. In DISC, volume 5218 of LNCS, pages 438–450, 2008.

29 T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp., 2:80–94, 1987.

30 Josef Widder and Ulrich Schmid. Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Dist. Comp., 20(2):115–140, 2007.

31 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. In PLDI, pages 357–368, 2015.

APPENDIX

A Detailed Proofs

In order to prove Theorem 3, we first prove mathematical background of it, i.e., Lemma 5.

I Lemma 5. Fix a k ∈ N, and for every i ∈ {1, . . . , k} fix δi > 0. Let a, b1, . . . , bk, c be
rationals for which the following holds: for every n, t1, . . . , tk ∈ N such that n >

∑k
i=1 δiti ≥ 0,

it holds that 0 ≤ an+
∑k
i=1 biti + c ≤ n. Then it is the case that

0 ≤ a ≤ 1, (7)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (8)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (9)

Proof. Let PRC be the set of all tuples (n, t1, . . . , tk) ∈ Nk+1 that satisfy n >
∑k
i=1 δiti ≥ 0.

Thus, we assume that for a, b1, . . . , bk, c ∈ Q the following holds:

0 ≤ an+
k∑

i=1
biti + c ≤ n, for all (n, t1, . . . , tk) ∈ PRC . (10)

We show that if any of the conditions (7)–(9) is violated, we obtain a contradiction by finding
(n0, t01, . . . , t

0
k) ∈ PRC such that 0 ≤ an0 +

∑k
i=1 bit

0
i + c ≤ n0 does not hold.

OPODIS 2017

188

32:18 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Proof of (7). Let us first show that 0 ≤ a ≤ 1.
Assume by contradiction that a > 1. From (10) we know that for every (n, t1, . . . , tk) ∈

PRC holds n ≥ an +
∑k
i=1 biti + c, that is, (1 − a)n ≥ ∑k

i=1 biti + c. Since 1 − a < 0, we
obtain

n ≤
∑k
i=1 biti + c

1− a , for all (n, t1, . . . , tk) ∈ PRC . (11)

Consider any tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where n0 > max

{∑k
i=1 δit

0
i ,

∑k

i=1
bit

0
i +c

1−a

}
. By

construction, we obtain: (i) the tuple is in PRC because n0 >
∑k
i=1 δit

0
i , and (ii) we have

n0 >

∑k

i=1
bit

0
i +c

1−a , such that we arrive at the required contradiction to (11).
Assume now that a < 0. Again from (10) we have that for all (n, t1, . . . , tk) ∈ PRC holds

an+
∑k
i=1 biti + c ≥ 0, or in other words an ≥ −∑k

i=1 biti − c. As a < 0, this means that

n ≤ −
∑k
i=1 biti − c
a

, for every (n, t1, . . . , tk) ∈ PRC . (12)

Consider a tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 with n0 > max

{∑k
i=1 δit

0
i ,
−
∑k

i=1
bit

0
i−c

a

}
. By

construction it holds that n0 >
∑k
i=1 δit

0
i , and thus the tuple is in PRC . Also by construction

it holds that n0 >
−
∑k

i=1
bit

0
i−c

a which is a contradiction with (12).
Proof of (8). Let us now prove that −δi−1 < bi < δi+1, for an arbitrary i ∈ {1, . . . , k}.
Assume by contradiction that bi ≥ δi+1. Recall from (10) that for all (n, t1, . . . , tk) ∈ PRC

holds an+
∑k
j=1 bjtj + c ≤ n, or in other words (1− a)n ≥∑k

j=1 bjtj + c. Since a ∈ [0, 1],
then (1−a)n ≤ n, for every n ≥ 0. Since bi ≥ δi+1, and ti ≥ 0, it holds that biti ≥ (δi+1)ti.
Thus, we have that for every (n, t1, . . . , tk) ∈ PRC holds that

n ≥ (1− a)n ≥
k∑

j=1
bjtj + c ≥ (δi + 1)ti +

∑

j 6=i
bjtj + c.

In other words, we have that

(n− δiti)−
∑

j 6=i
bjtj − c ≥ ti, for all (n, t1, . . . , tk) ∈ PRC . (13)

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 such that t0i = max{1,∑j 6=i(δj − bj) − c + 2},

t0j = 1 for j 6= i, and n0 =
∑k
j=1 δjt

0
j + 1 =

∑
j 6=i δj + δit

0
i + 1. This tuple is in PRC

since n0 >
∑k
j=1 δjt

0
j . Let us check the inequality from (13). By construction we have

(n0−δit0i)−
∑
j 6=i bjt

0
j−c =

∑
j 6=i δj+δit0i +1−δit0i −

∑
j 6=i bj−c, that is,

∑
j 6=i(δj−bj)−c+1,

which is strictly smaller than t0i by construction. Thus, we obtained a contradiction with (13).
Let us now assume bi ≤ −δi − 1. Recall from (10) that for all (n, t1, . . . , tk) ∈ PRC holds

0 ≤ an+
∑k
j=1 bjtj + c. Since a ∈ [0, 1], for every n ∈ N holds an ≤ n, and since bi ≤ −δi−1,

we have biti ≤ −δiti − ti, for every ti ≥ 0. Thus, for every (n, t1, . . . , tk) ∈ PRC we have

0 ≤ an+
k∑

j=1
bjtj + c ≤ n+ (−δiti − ti) +

∑

j 6=i
bjtj + c.

In other words, we have that

ti ≤ (n− δiti) +
∑

j 6=i
bjtj + c, for all (n, t1, . . . , tk) ∈ PRC . (14)

189

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:19

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where t0i = max{∑j 6=i(δj + bj) + c + 2, 1},

t0j = 1, for every j 6= i, and n0 =
∑k
j=1 δjt

0
j + 1 =

∑
j 6=i δj + δit

0
i + 1. This tuple is

in PRC , since n0 >
∑k
i=1 δit

0
i . Let us check the inequality from (14). By construction

we have (n0 − δit
0
i) +

∑
j 6=i bjt

0
j + c =

∑
j 6=i δj + δit

0
i + 1 − δit

0
i +

∑
j 6=i bj + c, that is,∑

j 6=i(δj + bj) + c + 1, which is strictly smaller than t0i by construction. This gives us a
contradiction with (14).

Proof of (9). And finally, let us prove that −2
∑k
i=1 δi − k − 1 ≤ c ≤ 2

∑k
i=1 δi + k + 1.

Assume by contradiction that c > 2
∑k
i=1 δi +k+ 1. Recall that for every (n, t1, . . . , tk) ∈

PRC holds n ≥ an+
∑k
i=1 biti + c, by (10). Since a ≥ 0, bi > −δi − 1, for every i = 1, . . . , k,

and c > 2
∑k
i=1 δi + k + 1, then we have that

n ≥ an+
k∑

i=1
biti + c >

k∑

i=1
(−δi− 1)ti + 2

k∑

i=1
δi + k+ 1, for all (n, t1, . . . , tk) ∈ PRC . (15)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 =

∑k
i=1 δit

0
i + 1 =∑k

i=1 δi + 1. The tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that∑k

i=1(−δi − 1)t0i + 2
∑k
i=1 δi + k + 1 =

∑k
i=1 δi + 1 = n0, which is a contradiction with (15).

Assume by contradiction that c < −2
∑k
i=1 δi − k − 1. Recall that for all (n, t1, . . . , tk) ∈

PRC holds 0 ≤ an+
∑k
i=1 biti + c, by (10). Since a ≤ 1, bi < δi + 1, for every i = 1, . . . , k,

and c < −2
∑k
i=1 δi − k − 1, then we have that

0 ≤ an+
k∑

i=1
biti+c < n+

k∑

i=1
(δi+1)ti−2

k∑

i=1
δi−k−1, for all (n, t1, . . . , tk) ∈ PRC . (16)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 =

∑k
i=1 δit

0
i + 1 =∑k

i=1 δi + 1. This tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that

n0 +
∑k
i=1(δi + 1)t0i − 2

∑k
i=1 δi − k − 1 = 0, which is a contradiction with (16). J

Proof of Theorem 3. As the given guard is sane for the resilience condition, the number
compared against a shared variable should have a value from 0 to n. For every tuple
(n, t1, . . . , tk) of parameter values satisfying the resilience condition, it should hold that
0 ≤ an+

∑k
i=1 biti + c ≤ n. We may thus apply Lemma 5 and the theorem follows. J

Proof of Corollary 4. Using the fact that x ≤ d̃
D ≤ y implies that Dx ≤ d̃ ≤ Dy, for a

D ∈ N, this corollary follows directly from Theorem 3. J

B Thresholds with floor and ceiling functions

The following theorem considers threshold guards that use the ceiling or the floor function.
It uses the same reasoning as in Theorem 3, combined with the properties of these functions.
Namely, for every x ∈ R it holds that x ≤ dxe < x+ 1 and x− 1 < bxc ≤ x.

I Theorem 6. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where

δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of the form

x ≥ f (an+ (b1t1 + . . .+ bktk) + c) or x < f (an+ (b1t1 + . . .+ bktk) + c) ,

OPODIS 2017

190

32:20 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

where x ∈ Γ is a shared variable, a, b1, . . . , bk, c ∈ Q are rationals, and f is either the ceiling
or the floor function. If the guard is sane for the resilience condition, then it holds that

0 ≤a ≤ 1, (17)
−δi − 1 <bi < δi + 1, for all i = 1, . . . , k, (18)

−2(δ1 + . . .+ δk)− k − 2 ≤c ≤ 2(δ1 + . . .+ δk) + k, if f is floor, or (19)
−2(δ1 + . . .+ δk)− k ≤c ≤ 2(δ1 + . . .+ δk) + k + 2, if f is ceiling. (20)

Proof sketch. The proof largely follows the arguments of the proof of Lemma 5 with fixed
denominators as in Corollary 4. The only remaining issue is that instead of constraints of
the form 0 ≤ an+

∑k
i=1 biti + c ≤ n, that are considered in Lemma 5, here we have to argue

about constraints of the form 0 ≤ f
(
an+

∑k
i=1 biti + c

)
≤ n, where f is the ceiling or the

floor function.
Let us first discuss the case when f is the ceiling function. As for every x ∈ R holds that

x ≤ dxe < x+ 1, we have that

an+ (b1t1 + . . .+ bktk) + c ≤ dan+ (b1t1 + . . .+ bktk) + ce < an+ (b1t1 + . . .+ bktk) + c+ 1.

Still, as the guard is sane, we have that 0 ≤ dan+ (b1t1 + . . .+ bktk) + ce ≤ n. Combining
these two constraints, we obtain that

0 < an+ (b1t1 + . . .+ bktk) + (c+ 1) and an+ (b1t1 + . . .+ bktk) + c ≤ n.

With these constraints, we can derive a contradiction following the proof of Lemma 5.
Similarly, if f is the floor function, we use the fact that for every x ∈ R holds that

x− 1 < bxc ≤ x. Therefore, we have that

an+ (b1t1 + . . .+ bktk) + c− 1 < ban+ (b1t1 + . . .+ bktk) + cc ≤ an+ (b1t1 + . . .+ bktk) + c.

As 0 ≤ ban+ (b1t1 + . . .+ bktk) + cc ≤ n, we obtain that

0 ≤ an+ (b1t1 + . . .+ bktk) + c and an+ (b1t1 + . . .+ bktk) + (c− 1) < n.

And again, the rest of the proof follows the line of the proof of Lemma 5. J

If coefficients in guards have a fixed denominator, we can obtain intervals for numerators
as a direct consequence of Theorem 6.

I Corollary 7. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where

δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of the form

x ≥ f
(
ã

D
n+

k∑

i=1

b̃i
D
ti + c̃

D

)
or x < f

(
ã

D
n+

k∑

i=1

b̃i
D
ti + c̃

D

)
,

where x ∈ Γ is a shared variable, ã, b̃1, . . . , b̃k, c̃ ∈ Z are integers, D ∈ N, and f is either the
ceiling or the floor function. If the guard is sane for the resilience condition, then it holds

0 ≤a ≤ D, (21)
D(−δi − 1) <bi < D(δi + 1), for all i = 1, . . . , k, (22)

D(−2(δ1 + . . .+ δk)− k − 2) ≤c ≤ D(2(δ1 + . . .+ δk) + k), if f is floor, or (23)
D(−2(δ1 + . . .+ δk)− k) ≤c ≤ D(2(δ1 + . . .+ δk) + k + 2), if f is ceiling. (24)

191

192

Part IV

Parameterized Extension of

Behavior-Interaction-Priority

Framework

193

Chapter 8

Parameterized Systems in BIP: Design and

Model Checking

Igor Konnov, Tomer Kotek, Qiang Wang, Helmut Veith, Simon Bliudze,
Joseph Sifakis. Parameterized Systems in BIP: Design and Model Check-
ing. CONCUR, pp. 30:1–30:16, 2016.

doi: http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.30

195

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.30

Parameterized Systems in BIP:
Design and Model Checking∗

Igor Konnov1, Tomer Kotek2, Qiang Wang3, Helmut Veith4, Simon
Bliudze5, and Joseph Sifakis6

1 TU Wien (Vienna University of Technology), Austria
Konnov@forsyte.at

2 TU Wien (Vienna University of Technology), Austria
Kotek@forsyte.at

3 École polytechnique fédérale de Lausanne, Switzerland
Qiang.Wang@epfl.ch

4 TU Wien (Vienna University of Technology), Austria
Veith@forsyte.at

5 École polytechnique fédérale de Lausanne, Switzerland
Simon.Bliudze@epfl.ch

6 École polytechnique fédérale de Lausanne, Switzerland
Joseph.Sifakis@epfl.ch

Abstract
BIP is a component-based framework for system design built on three pillars: behavior,

interaction, and priority. In this paper, we introduce first-order interaction logic (FOIL) that
extends BIP without priorities to systems parameterized in the number of components. We show
that FOIL captures classical parameterized architectures such as token-passing rings, cliques of
identical components communicating with rendezvous or broadcast, and client-server systems.

Although the BIP framework includes efficient verification tools for statically-defined sys-
tems, none are available for parameterized systems with an unbounded number of components.
On the other hand, the parameterized model checking literature contains a wealth of techniques
for systems of classical architectures. However, application of these results requires a deep under-
standing of parameterized model checking techniques and their underlying mathematical models.
To overcome these difficulties, we introduce a framework that automatically identifies paramet-
erized model checking techniques applicable to a BIP design. To our knowledge, this is the
first framework that allows one to apply prominent parameterized model checking results in a
systematic way.

1998 ACM Subject Classification [Software Engineering] D.2.2: Design Tools and Techniques,
D.2.4 Software/Program Verification

Keywords and phrases Rigorous system design, BIP, verification, parameterized model checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.30

∗ We dedicate this article to the memory of Helmut Veith, who passed away tragically while this manuscript
was being prepared. His curiosity and energy ignited our joint effort in this research.
This work was supported by the Austrian National Research Network S11403-N23 (RiSE), the Vienna
Science and Technology Fund (WWTF) through the grant APALACHE (ICT15-103), and, partially, by
the Swiss National Science Foundation through the National Research Programme “Energy Turnaround”
(NRP 70) grant 153997.

© Igor Konnov, Tomer Kotek, Qiang Wang, Helmut Veith, Simon Bliudze, and Joseph Sifakis;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

196

30:2 Parameterized Systems in BIP: Design and Model Checking

1 Introduction

Design, manufacture and verification of large scale complex hardware/software systems (e.g.,
cyber-physical systems) remains a grand challenge in system design automation [25]. To
address this challenge, the rigorous system design methodology [24] and the behaviour-
interaction-priority (BIP) framework [4] have been recently proposed. BIP comes with
a formal framework and a toolchain. The BIP framework has well-defined semantics for
modeling system behavior and architectures. The BIP toolchain supports verification of
high-level system designs and automatic system synthesis of low-level implementations from
high-level system designs.

The existing BIP tools focus on design and verification of systems with a fixed number of
communicating components [5, 22]. However, many distributed systems are designed with
parameterization in mind. For instance, the number of components in the system is not
typically fixed, but varies depending on the system setup. In this case, one talks about
parameterized verification, where the number of components is a parameter.

Model checking is a pragmatic approach to verification that has found many applications
in industry, e.g., see [19]. Many efforts were invested into extension of model checking to the
parameterized case, which led to numerous parameterized model checking techniques (see [9]
for a recent survey). Unfortunately, often parameterized model checking techniques come
with their own mathematical models, which makes their practical application difficult. To
perform parameterized model checking, the user has to thoroughly understand the research
literature. Typically, the user needs to first manually inspect the parameterized models and
match them with the mathematical formalisms from the relevant parameterized verification
techniques. Using the match, the user would then apply the decidability results (if any)
for the parameterized models, e.g., by computing a cutoff or translating the parameterized
model into the language of a particular tool for the specific architecture. Thus, there is a gap
between the mathematical formalisms and algorithms from the parameterized verification
research and the practice of parameterized verification, which is usually done by engineers
who are not familiar with the details of the research literature. In this paper, we aim at
closing this gap by introducing a framework for design and verification of parameterized
systems in BIP. With this framework, we make the following contributions:
1. We extend propositional interaction logic to the parameterized case with arithmetics,

which we call first-order interaction logic (FOIL). We build on the ideas from configuration
logic [21] and dynamic BIP [10]. FOIL is powerful enough to express architectures found in
distributed systems, including the classical architectures: token-passing rings, rendezvous
cliques, broadcast cliques, and rendezvous stars. We also identify a decidable fragment
of FOIL which has important applications in practice. This contribution is covered by
Section 3.

2. We provide a framework for integration of mathematical models from the parameterized
model checking literature in an automated way: given a parameterized BIP design, our
framework detects parameterized model checking techniques applicable to this design.
This automation is achieved by the use of SMT solvers and standard (non-parameterized)
model checkers. This contribution is covered by Sections 4 and 5.

3. We provide a preliminary prototype implementation of the proposed framework. Our
prototype tool takes a parameterized BIP design as its input and detects whether one of the
following classical results applies to this BIP design: the cut-off results for token-passing
rings by Emerson & Namjoshi [16], the VASS-based algorithms by German & Sistla [18],
and the undecidability and decidability results for broadcast systems by Abdulla et al. [1]

197

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:3

and Esparza et al. [17]. More importantly, our framework is not specifically tailored to
the mentioned techniques. This contribution is covered by Sections 5 and 6.

We remark that our framework builds on the notions of BIP, which allows us to express
complex notions in terminology understood by engineers. Moreover, our framework allows
an expert in parameterized model checking to capture seminal mathematical models found
in the verification literature, e.g., [18, 17, 16, 13].

This paper is structured as follows. In Section 2, we briefly recall the BIP modeling
framework. In Section 3, we introduce our parameterized extension. In Sections 4 and 5,
we present our verification framework and the automatic system architecture identification
technique. In Section 6, we present the preliminary experiments. Section 7 closes with related
work, conclusions, and future work.

2 BIP without priorities

In this section, we review the notions of BIP [4] with the following restrictions: (i) states of
the components do not have specific internal structure; (ii) we do not consider interaction
priorities. While we believe that our approach can be extended to priorities, we leave this
for future work.

As usual, a labeled transition system is a tuple (S, s0, A,R) with a set of locations S, an
initial location s0 ∈ S, a non-empty set of actions A, and a transition relation R ⊆ S×A×S.

IDefinition 2.1 (Component type). A component type is a transition system B = 〈Q, `0,P,E〉
over the finite sets Q and P. By convention, the set of actions P is called the set of ports.

Ports form the interface of a component type. We assume that, for each location, no two
outgoing transitions from this location are labeled with the same port. We also assume that
the ports of each component type, as well as the locations, are disjoint.

Let 〈B0, . . . ,Bk−1〉 be a tuple of component types, where each Bi is 〈Qi, `0i ,Pi,Ei〉 for i ∈
[0, k). We introduce an infinite set of components {Bi[j] | j ≥ 0} for i ∈ [0, k). A
component Bi[j] = 〈Qi[j], `0i [j],Pi[j],Ei[j]〉 is obtained from the component type Bi by
renaming the set of ports. Thus, as transition systems, Bi[j] and Bi are isomorphic. We
postulate Pi[j] ∩ Pi[j′] = ∅, for j 6= j′.

A BIP model is a composition of finitely many components instantiated from the
component types 〈B0, . . . ,Bk−1〉. To denote the number of components of each type, we
introduce a size vector N̄ = 〈N0, . . . , Nk−1〉: there are Ni components of component type Bi,
for i ∈ [0, k).

Coordination of components is specified with interactions. Intuitively, an interaction
defines a multi-party synchronization of component transitions. A BIP interaction is a finite
set of ports, which defines a possible synchronization among components.

I Definition 2.2 (Interaction). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size
vector N̄ = 〈N0, . . . , Nk−1〉 , an interaction γ ⊆ {p ∈ Pi[j] | i ∈ [0, k), j ∈ [0, Ni)} is a set of
ports such that |γ ∩ Pi[j]| ≤ 1 for all i ∈ [0, k) and j ∈ [0, Ni), i.e., an interaction is a set of
ports such that at most one port of each component takes part in an interaction. If p ∈ γ,
we say that p is active in γ.

I Definition 2.3 (BIP Model). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size
vector N̄ = 〈N0, . . . , Nk−1〉, a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ is a tuple 〈B,Γ〉, where B is the
set {Bi[j] | i ∈ [0, k), j ∈ [0, Ni)} and Γ is a set of interactions defined w.r.t. 〈B0, . . . ,Bk−1〉
and N̄ .

CONCUR 2016

198

30:4 Parameterized Systems in BIP: Design and Model Checking

I Definition 2.4 (BIP operational semantics). Given a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ, we
define its operational semantics as a transition system TS(〈B0, . . . ,Bk−1〉N̄,Γ) = 〈S, s0,Γ, R〉,
where:
1. The set of configurations S is defined as the Cartesian product of the sets of locations of

the components QN0
0 × · · · × QNk−1

k−1 . Given a configuration s ∈ S, we denote by s(i, j)
the jth member of the tuple defined by the ith product QNi

i where j ∈ [0, Ni).
2. The initial configuration s0 ∈ S satisfies that s0(i, j) = `0i [j] for all i ∈ [0, k) and

j ∈ [0, Ni).
3. The transition relation R contains a triple (s, γ, s′), if, for each i ∈ [0, k) and j ∈ [0, Ni),

the jth component of type i
either has an active port p ∈ γ ∩ Pi[j] and 〈s(i, j), p, s′(i, j)〉 ∈ Ei[j],
or is not participating in the interaction γ, i.e., γ ∩ Pi[j] = ∅ and s′(i, j) = s(i, j).

Intuitively, the local transitions of components fire simultaneously, provided that their
ports are included in the interaction; other components do not move.

I Example 2.5 (Milner’s scheduler). We follow the formulation by Emerson & Namjoshi [16].
A scheduler is modeled as a token-passing ring. Only the process that owns the token may
start running a new task. The component type B0 = 〈Q0, `

0
0,P0,E0〉 is given by the locations

Q0 = {S0, . . . , S4}, the initial location `00 = S0, the port types P0 = {snd, rcv, start,finish},
and the edges E0 that are shown in the figure below:

S0 S1 S2

S3

S4

start snd rcv finish

finish

rcv

A component owns the token when in the location S0, S1, or S3. In S0, a component
initiates its task by interacting on port start. The token is then sent to the component’s
right neighbor on the ring via an interaction on port snd. The component then waits until
(a) its initiated task has finished, and (b) the component has received the token again. When
both (a) and (b) have occurred, the component may initiate a new task. Note that (a) and
(b) may occur in either order.

Fix a number N0 ∈ N. The following set of interactions represents the ring structure:

Γ = {γi→j , γstart(i), γfinish(i) | 0 ≤ i < N0 and j ≡ i+ 1 mod n0}

where γi→j = {(snd, i), (rcv, j)} is the interaction passing the token from the ith component
to the next component on the ring, while the interactions γstart(i) = {(start, i)} and γfinish(i) =
{(finish, i)} allow the ith component to take the internal transitions labeled ’start’ and ’finish’
respectively. The BIP model of the Milner scheduler of size N0 is 〈B,Γ〉, where B is the set
of components {B0[j] | j ∈ [0, N0)}.

3 Parameterized BIP without priorities

Since the number of possible interactions in a parameterized system is unbounded, and
each interaction itself may involve an unbounded number of actions, the set of all possible
interactions is infinite. Hence, we need a symbolic representation of such a set. To this end,
we propose first order interaction logic—a uniform and formal language for system topologies
and coordination mechanisms in parameterized systems. Using this logic, we introduce a
parameterized extension of BIP, and show that this extension naturally captures standard
examples.

199

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:5

3.1 FOIL: First order interaction logic
In this section, we fix a tuple of component types 〈B0, . . . ,Bk−1〉. For each port p ∈ Pi
of an ith component type, we introduce a unary port predicate with the same name p.
Furthermore, we introduce a tuple of constants n̄ = 〈n0, . . . , nk−1〉, which represents the
number of components of each type. We also assume the standard vocabulary of Presburger
arithmetic, that is, 〈0, 1,≤,+〉.

FOIL syntax. Assume an infinite set of index variables I. We say that ψ is a first order
interaction logic formula, if it is constructed according to the following grammar:

ψ ::= p(i) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ∃i :: typej : φ. ψ | ∀i :: typej : φ. ψ ,

where p ∈ P0 ∪ · · · ∪ Pk−1, i ∈ I, and φ is a formula in Presburger arithmetic over index
variables and the vocabulary 〈0, 1,≤,+, n̄〉.

Informally, the syntax Q i :: typej : φ. ψ, where Q ∈ {∃,∀}, restricts the index variable i
to be associated with the component type Bj . Notice, however, that this syntax does not
enforce type correctness of ports. For instance, one can write a formula ∃i :: typej : p(i) with
some p 6∈ Pj . While this formula is syntactically correct, it is not in line with Definition 2.2
of interaction given in Section 2. To this end, we say that a FOIL formula is natural, if for
each of its subformulae Q i :: typej : φ. ψ(i), for Q ∈ {∃,∀}, and every atomic formula p(i)
of ψ, it holds that p ∈ Pj . From here on, we assume FOIL formulae to be natural. We write
∃i :: typej . ψ as a shorthand for ∃i :: typej : true. ψ.

FOIL semantics. We give the semantics of a FOIL formula by means of structures. A
first-order interaction logic structure (FOIL structure) is a pair ξ = (N, αξ): the set of natural
numbers N is the domain of ξ, while αξ is the interpretation of all the predicates and of the
constants n̄. The symbols 0, 1, ≤, and + have the natural interpretations over N.

A valuation σ is a function σ : I → N. We denote by σ[x 7→ j] the valuation obtained
from σ by mapping the index variable x to the value j. Assignments are used to give values to
free variables in formulae. For a FOIL structure ξ and a valuation σ, the semantics of FOIL
is formally given as follows (the semantics of Boolean operators and universal quantifiers is
defined in the standard way):

ξ, σ |=FOIL p(i) iff αξ(p) is true on σ(i)
ξ, σ |=FOIL ∃i :: typej : φ. ψ iff there is l ∈ [0, αξ(nj)) such that

ξ, σ[i 7→ l] |=FO φ and ξ, σ[i 7→ l] |=FOIL ψ

where |=FO to denotes the standard ’models’ relation of first-order logic.
Finally, for a FOIL formula ψ without free variables and a structure ξ, we write ξ |=FOIL ψ,

if ξ, σ0 |=FOIL ψ for the valuation σ0 that assigns 0 to every index i ∈ I.1

Decidability. It is easy to show that checking validity of a FOIL sentence2 is undecidable,
and that FOIL contains an important decidable fragment:

I Theorem 3.1 (Decidability of FOIL). The following results about FOIL hold:

1 Since ψ has no free variables, our choice of σ0 is arbitrary: for all σ we have ξ, σ |=FOIL ψ if and only if
ξ, σ0 |=FOIL ψ.

2 A FOIL formula with no free variables is called a sentence. A sentence is valid if it is satisfied by all
structures.

CONCUR 2016

200

30:6 Parameterized Systems in BIP: Design and Model Checking

(i) Validity of FOIL sentences is undecidable.
(ii) Validity of FOIL sentences in which all additions are of the form i+ 1 is decidable.

Proof. (i) FOIL contains Presburger arithmetic with unary predicates, which is known to
be as strong as Peano arithmetic [20]. Hence, satisfiability and validity of FOIL formulae are
undecidable.

(ii) The formula j = i + 1 is definable in FOIL by i ≤ j ∧ j 6= i ∧ ψconsecutive(i, j),
where ψconsecutive(i, j) = ∀` :: typet. (j ≤ ` ∧ ` ≤ i) → (` = i ∨ ` = j), where t is the type
of i and j. Hence, we can rewrite any FOIL sentence ψ in which all additions are of the
form i + 1 as an equi-satisfiable first-order logic sentence ψ′ without using addition (+).
The sentence ψ′ belongs to S1S, the monadic second order theory of (N, 0, 1,≤), which is
decidable, see [27]. J

In the following, we restrict addition to the form i+ 1, and thus stay in the decidable
fragment.

3.2 Interactions as FOIL structures
In contrast to Definition 2.2 of a standard interaction, which is represented explicitly as
a finite set of ports, we use first order interaction logic formulae to define all the possible
interactions in parameterized systems. Our key insight is that each structure of a formula
uniquely defines at most one interaction, and the set of all possible interactions is the union
of the interactions derived from the structures that satisfy the formula.

Intuitively, if p(j) evaluates to true in a structure ξ, then the jth instance of the respective
component type—uniquely identified by the port p—takes part in the interaction identified
with ξ. Thus, we can reconstruct a standard BIP interaction from a FOIL structure by
taking the set of ports, whose indices are evaluated to true by the unary predicates. Formally,
given a FOIL structure ξ = (N, αξ), we define the set γξ = {(p, j) | i ∈ [0, k), p ∈ Pi, j ∈
[0, αξ(nj)), αξ(p)(j) = true}. In the following, the notation (p, j) denotes the port p of the
jth component of the type Bi with p ∈ Pi.

Notice that γξ does not have to be an interaction in the sense of Definition 2.2. Indeed,
one can define ξ whose set γξ includes two ports of the same component. We say that ξ
induces an interaction, if γξ is an interaction in the sense of Definition 2.2.

I Definition 3.2 (Parameterized BIP Model). A parameterized BIP model is a tuple
〈�, n̄, ψ, ε〉, where � = 〈B0, . . . ,Bk−1〉 is a tuple of component types, ψ is a sentence
in FOIL over port predicates and a tuple n̄ = 〈n0, . . . , nk−1〉 of size parameters, and ε is a
linear constraint over n̄.

The tuple n̄ consists of the size parameters for all component types, and the constraint
ε restricts these parameters. For example, the formula (n0 = 1) ∧ (n1 ≥ 10) requires every
instance of a parameterized BIP model to have only one component of the first type and at
least ten components of the second type. The FOIL sentence ψ restricts both the system
topology and the communication mechanisms, see Example 3.4.

I Definition 3.3 (PBIP Instance). Given a parameterized BIP model 〈�, n̄, ψ, ε〉 and a size
vector N̄ , a PBIP instance is a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ = 〈B,Γ〉, where B and Γ are
defined as follows:
1. the numbers N̄ satisfy the size constraint ε,
2. the set of components B is {Bi[j] | i ∈ [0, k) and j ∈ [0, Nj)}, and

201

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:7

3. the set of interactions Γ consists of all interactions γξ induced by a FOIL structure ξ such
that the size parameters n̄ are interpreted in ξ as N̄ , and ξ satisfies ψ, i.e. αξ(n̄) = N̄

and ξ |=FOIL ψ.

In the rest of this section, we give three examples that show expressiveness of parameterized
BIP.

I Example 3.4 (Milner’s scheduler revisited). The parameterized BIP model of Milner’s
scheduler is 〈〈B0〉, 〈n0〉, ψ, true〉, where B0 is from Example 2.5 and ψ = ψtoken ∨ ψinternal
defined as follows. The formula ψtoken defines the token-passing interactions and the formula
ψinternal defines the internal interactions of starting or finishing a task:

ψtoken = ∃i, j :: type0 : j = (i+ 1) mod n0. snd(i) ∧ rcv(j) ∧ ψonly(i, j)
ψonly(i, j) = ∀` :: type0 : ` 6= i ∧ ` 6= j. ¬snd(`) ∧ ¬rcv(`) ∧ ¬start(i) ∧ ¬finish(i)
ψinternal = ∃i :: type0. ψonly(i, i) ∧ (start(i) ∨ finish(i))

The formula ψtoken does not have free variables and holds for a structure ξ, if the
induced interaction γξ is a send-receive interaction along some edge i → j of the ring,
where j = (i+ 1) mod n0. In fact, j = (i+ 1) mod n0 is just a shorthand for the formula:
(i+ 1 < n0∧ j = i+ 1)∨ (i+ 1 = n0∧ j = 0). The formula ψonly(i, j) excludes any component
other than i and j from participating in the interaction. (If i = j then all components other
than i are excluded.) The formula ψinternal enables the transitions labeled with ’start’ and
’finish’, in which only one component changes its location.

Observe that the semantics of FOIL forces the quantified variables i, j, ` to be in the
range from 0 to N0 − 1. Hence, we omit explicit range constraints. For instance, ψtoken is
equivalent to the formula:

∃i, j :: type0 : 0 ≤ i, j < n0 ∧ (j = (i+ 1) mod n0). snd(i) ∧ rcv(j) ∧ ψonly(i, j)

The set of FOIL structures ξ that satisfy ψ induces the same set of interactions Γ as in
Example 2.5. While Example 2.5 defines the set Γ explicitly for any fixed value N0, in the
parameterized setting the interactions are defined uniformly by a single FOIL formula ψ, for
all values of N0.

In this example we do not restrict the initial locations so that exactly one process owns
the token in the initial configuration. This delicate issue is resolved in Section 5.4.

I Example 3.5 (Broadcast in a star). Let 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉 be a parameterized BIP
model with two component types and the size constraint ε ≡ (n0 = 1). We also assume
that component type B0 (resp. B1) has only one port send (resp. receive), i.e., P0 = {send}
and P1 = {receive}. The FOIL formula ψ = ∃i :: type0. send(i) specifies broadcast from the
component B0[0], the center of the star, to the leaves of type B1. The set of interactions
defined by ψ consists of all sets of ports of the form {(send, 0)} ∪ {(receive, d) | d ∈ D)} for
all D ⊆ [0, n1), including the empty set D = ∅.

I Example 3.6 (Barrier). Consider a barrier synchronization protocol, cf. [9, Example 6.6].
The component type B0 is as shown below:

master
neutral

slave

loopM loopN loopS
exit

go exit

follow

The location neutral is the initial location. A synchronization episode consists of three
stages:

CONCUR 2016

202

30:8 Parameterized Systems in BIP: Design and Model Checking

(i) First, a single component enters the barrier by moving to master.
(ii) Then, each of the others components moves to slave.
(iii) Finally, the master triggers a broadcast and all components leave the barrier by moving

to neutral.
The parameterized BIP model of the barrier synchronization protocol is 〈〈B0〉, 〈n0〉, ψ, true〉,
where ψ = ψgo ∨ ψfollow ∨ ψexit, and the following formulae ψgo, ψfollow, and ψexit describe
the interactions of stages (i), (ii), and (iii) respectively:

ψgo = ∃i :: type0. go(i) ∧ ∀j :: type0 : i 6= j. loopN (j)
ψfollow = ∃i, j :: type0. follow(i) ∧ loopM (j)∧

∀` :: type0 : i 6= `. loopM (`) ∨ loopN (`) ∨ loopS(`)
ψexit = ∀i :: type0. exit(i)

All three formulae enforce progress by requiring at least one process to change its state.

4 Parameterized model checking

In this section, we review the syntax and semantics of the indexed version of CTL∗, called
ICTL?, which is often used to specify the properties of parameterized systems [9]. Though
we use indexed temporal logics to define the standard parameterized model checking problem,
these logics are not the focus of this paper. Further, we introduce the parameterized model
checking problem for parameterized BIP design, and show its undecidability.

Syntax. For a set of index variables I, the ICTL? state and path formulae follow the
grammar:

θ ::= true | at(q, i) | ¬θ | θ1 ∧ θ2 | ∃i :: typej : φ. θ | ∀i :: typej : φ. θ | Eϕ | Aϕ , (state formulae)
ϕ ::= θ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2 . (path formulae)

where q ∈ ⋃0≤j<k Qj is a location, i ∈ I is an index, and φ is a formula in Presburger
arithmetic over size variables n̄ and index variables from the set I.

Semantics. Fix a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ and its transition system M = 〈S, s0,Γ, R〉
= TS(〈B0, . . . ,Bk−1〉N̄,Γ) as per Definition 2.4. To evaluate Presburger formulae, we use the
first-order structure PA =

〈
N, 0, 1,≤,+, N̄

〉
. The semantics of ICTL? formulae is defined

inductively using M and PA. We only briefly discuss semantics to highlight the role of
quantifiers in indexed temporal logics. For further discussions, we refer the reader to the
textbook [12].

State formulae are interpreted over a configuration s and a valuation of index variables
σ : I → N (the semantics of Boolean operators and universal quantifiers is defined in the
standard way):

M, s, σ |=ICTL? at(q, i) iff q = s(j, σ(i)), where q ∈ Qj

M, s, σ |=ICTL? ∃i :: typej : φ. θ iff PA, σ[i 7→ l] |=FO φ and M, s, σ[i 7→ l] |=ICTL? θ hold,
for some l ∈ [0, Nj)

M, s, σ |=ICTL? Eϕ iff M,π, σ |=ICTL? ϕ for some infinite path π starting from s

Path formulae are interpreted over an infinite path π, and the valuation function σ as
follows (the semantics for Boolean operators and temporal operators F and G is defined in
the standard way):

M,π, σ |=ICTL? θ iff M, s, σ |=ICTL? θ, where s is the first configuration of the path π
M, π, σ |=ICTL? Xϕ iff M,π1, σ |=ICTL? ϕ

M,π, σ |=ICTL? ϕ1Uϕ2 iff ∃j ≥ 0. M, πj , σ |=ICTL? ϕ2 and ∀i < j. M, πi, σ |=ICTL? ϕ1,

203

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:9

where πi is the suffix of the path π starting with the ith configuration.
Finally, given a formula ϕ without free variables, we say that M satisfies ϕ, written

as M |=ICTL? ϕ, if M, s0, σ0 |=ICTL? ϕ for the valuation σ0 that assigns zero to each index
from the set I. The choice of σ0 is arbitrary, as for all σ, it holds that M, s0, σ |=ICTL? ϕ if
and only if M, s0, σ0 |=ICTL? ϕ.

Now we are in the position to formulate the parameterized model checking problem for
BIP:

I Problem 4.1 (Parameterized model checking). The verification problem for a parameterized
BIP model 〈�, n̄, ψ, ε〉 and an ICTL? state formula θ without free variables, is whether every
instance 〈B0, . . . ,Bk−1〉N̄,Γ satisfies θ.

Not surprisingly, Problem 4.1 is undecidable in general. For instance, one can use the
proof idea [16] to obtain the following theorem. We do not give a detailed proof here: to a
large extent, it repeats the encoding of a unidirectional token ring, which we discuss later in
Section 5.4.

I Theorem 4.2 (Undecidability). Given a two-counter machine M2, one can construct an
ICTL?-formula G¬halt and a parameterized BIP model B = 〈�, n̄, ψ, ε〉 that simulates M2
and has the property: M2 does not halt if and only if 〈B0, . . . ,Bk−1〉N̄,Γ |= G¬halt for all
instances of B.

5 Identifying the architecture of a parameterized BIP model

In the non-parameterized case, knowing the architecture is not crucial, as there are model
checking algorithms that apply in general to arbitrary finite transition systems. However, the
architecture dramatically affects decidability of parameterized model checking. Architecture
identification plays an important step in our verification framework. In this section, we show
how to identify system architectures automatically, and present applications to verification.

Our framework. For the sake of exposition, we assume that parameterized BIP models
have only one component type. Our identification framework extends easily to the general
case.

Given an architecture A, e.g., the token ring architecture, an expert in parameterized
model checking creates formula templates in FOIL (FOIL-templates) and in temporal logic
(TL-templates). FOIL-templates describe the system topology and communication mechanism
for the architecture A. TL-templates describe the behaviour of the component type required
by the architecture A, e.g., in a token ring, a component which does not have the token
cannot send the token. These templates are designed once for all parameterized BIP models
compliant with A. In the sequel, TL-templates are only used for token rings, thus we omit
them from the discussion of other architectures.

Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉—not necessarily compliant with the
architecture A—the templates for the architecture A are instantiated to FOIL formulae
ϕFOIL

1 , . . . , ϕFOIL
m , and temporal logic formulae ϕTL

1 , . . . , ϕ
TL
` . The FOIL formulae guarantee

that the set of interactions expressed by the FOIL formula ψ adheres to A. The temporal
logic formulae guarantee that the behaviour of the component type B adheres to A. The
identification criterion is as follows: if ϕFOIL

1 ∧ · · · ∧ ϕFOIL
m is valid and B |=TL ϕ

TL
1 ∧ · · · ∧ ϕTL

`

holds, then the parameterized model 〈〈B〉, 〈n〉, ψ, ε〉 is compliant with the architecture A. In
practice, we use an SMT solver to check validity of the FOIL formulae and a model checker
to check that the component type B satisfies the temporal formulae.

CONCUR 2016

204

30:10 Parameterized Systems in BIP: Design and Model Checking

In the rest of this section we construct FOIL-templates and TL-templates for well-
known architectures: cliques of processes communicating via broadcast, cliques of processes
communicating via rendezvous, token rings, and server-client systems in which processes are
organized in a star and communicate via rendezvous. We show that the provided templates
identify the architectures in a sound way.

5.1 The common templates for BIP semantics
As we discussed in Section 3.2, not every FOIL structure induces a BIP interaction. We show
that one can write a FOIL-template that restricts FOIL structures to induce BIP interactions.
The following template ηFOIL

interaction(P0) expresses that there is no component with more than
one active port: ∀j :: type0.

∧
p,q∈ P0, q 6=p ¬p(j) ∨ ¬q(j)

As expected, the template ηFOIL
interaction(P0) restricts FOIL structures to BIP interactions:

I Proposition 5.1. Let P0 be a set of ports, and η be the instantiation of ηFOIL
interaction with P0.

A FOIL structure ξ satisfies η if and only if ξ induces an interaction.

To express that a component has at least one active port, we introduce template
active(j) ≡ ∨p∈P0

p(j). To simplify notation, parameterization of active(j) by P0 is omitted.

5.2 Pairwise rendezvous in a clique
In a BIP model, components are said to communicate by binary rendezvous, if all the
allowed interactions consist of exactly two ports. The communication is said to be by
pairwise rendezvous, if there is a binary rendezvous between every two components. Pairwise
rendezvous has been widely used as a basic primitive in the parameterized model checking
literature, e.g., in [18, 3].

FOIL-templates. We construct a template using two formulae ηFOIL
≤2 (P0) and ηFOIL

≥2 (P0):

The formula ηFOIL
≤2 (P0) expresses that every interaction has at most two ports:

∀i, j, ` :: type0. active(i) ∧ active(j) ∧ active(`)→ i = j ∨ j = ` ∨ i = `.
The formula ηFOIL

≥2 (P0) expresses that every interaction has at least two ports:
∃i, j :: type0 : i 6= j. active(i) ∧ active(j).

We show that the combination of ηFOIL
interaction , ηFOIL

≥2 , and ηFOIL
≤2 defines pairwise rendezvous

communication in cliques of all sizes:

I Theorem 5.2. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2) is valid, then for every instance BN,Γ, the

following holds:
1. every interaction is of size 2, that is, |γ| = 2 for γ ∈ Γ, and
2. for every pair of indices i and j such that 0 ≤ i, j < N and i 6= j and every pair of ports

p, q ∈ P0, there is a FOIL structure ξ such that ξ |=FOIL ψ ∧ p(i) ∧ q(j).

Proof. Fix an instance BN,Γ of 〈〈B〉, 〈n〉, ψ, ε〉.
To show Point 1, fix an interaction γ of BN,Γ. By Definition 3.3, there is a FOIL

structure ξ such that ξ |=FOIL ψ and γ = γξ. As ξ induces an interaction, by Proposition 5.1,
we immediately have that γξ satisfies the instantiation of ηFOIL

interaction. Hence, since (ψ ∧
ηFOIL

interaction)↔ (ηFOIL
interaction ∧ηFOIL

≥2 ∧ηFOIL
≤2) is valid we conclude that ξ also satisfies ηFOIL

≥2 ∧ηFOIL
≤2 .

This immediately gives us the required equality |γξ| = 2.

205

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:11

To show Point 2, fix a pair of indices i and j such that 0 ≤ i, j < N and i 6= j

and a pair of ports p, q ∈ P0. The set γ = {(p, i), (q, j)} is an interaction. Obviously,
one can construct a FOIL structure ξ that induces γ. Since i 6= j and |γξ| = 2, it holds
that ξ |=FOIL η

FOIL
interaction∧ηFOIL

≥2 ∧ηFOIL
≤2 . Thus, since (ψ∧ηFOIL

interaction)↔ (ηFOIL
interaction∧ηFOIL

≥2 ∧ηFOIL
≤2)

is valid, it follows that ξ |=FOIL ψ. From this and that ξ induces the interaction γ, we conclude
that ξ |=FOIL ψ ∧ p(i) ∧ q(j). J

In Theorem 5.2, the right-hand side of the equivalence does not restrict which pairs of
ports may interact, e.g., it does not require the ports to be the same. Thus, if ψ is more
restrictive than the right-hand side of the equivalence, validity will not hold. Obviously, one
can further restrict the equivalence to reflect additional constraints on the allowed pairs of
ports. Moreover, one may restrict which ports are required by the template to communicate
via pairwise rendezvous for compositionality, e.g. to allow other ports to participate in other
communication primitives and in internal transitions. (One may augment or restrict the
templates of all the architectures below similarly.)

Applications. Theorem 5.2 gives us a criterion for identifying parameterized BIP models,
where all processes may interact with each other using rendezvous communication. To verify
such parameterized BIP models, we can immediately invoke the seminal result by German &
Sistla [18, Sec. 4]. Their result applies to specifications written in indexed linear temporal
logic without the operator X .

More formally, we say that an ICTL? path formula χ(i) is a 1-LTL\X formula, if χ has only
one index variable i and χ does not contain quantifiers ∃, ∀, A , E , nor temporal operator X .
Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉 and a 1-LTL\X formula χ, one can check in
polynomial time, whether every instance BN, Γ satisfies the formula E ∃i :: type0 : true. χ(i).

5.3 Broadcast in a clique
In BIP, components communicate via broadcast, if there is a “trigger” component whose
sending port is active, and the other components either have their receiving port active, or
have no active ports. In this section, we denote the sending port with send and the receiving
port with receive. Our results can be easily extended to treat multiple sending and receiving
ports. In a broadcast step, all the components with the active ports make their transitions
simultaneously. Broadcasts were extensively studied in the parameterized model checking
literature [17, 23].

One way to enforce all the processes to receive a broadcast, if they are ready to do so, is
to use priorities in BIP: an interaction has priority over any of its subsets. In this paper,
we consider BIP without priorities. In this case, one can express broadcast by imposing
the following restriction on the structure of the component type B: every location has a
transition labeled with the port receive. This restriction enforces all interactions to involve all
the components, though some of the components may not change their location by firing
a self-loop transition. This requirement can be statically checked on the transition system
of B, and if the component type does not fulfill the requirement, it is easy to modify the
component type’s transition system by adding required self-loops.

FOIL-templates. First, we define the formula ηFOIL
bcast(P0), which guarantees that every

interaction includes one sending port by one component and the receiving ports of the other
components:

∃i :: type0. send(i) ∧ ∀j :: type0 : j 6= i. receive(j)

CONCUR 2016

206

30:12 Parameterized Systems in BIP: Design and Model Checking

We show that the combination of ηFOIL
interaction and ηFOIL

bcast defines broadcast in cliques of all
sizes:

I Theorem 5.3. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction)↔ (ηFOIL
interaction ∧ ηFOIL

bcast) is valid, then for every instance BN,Γ, the following
holds:
1. every interaction consists of one send port and N − 1 receive ports.
2. for every index c, such that 0 ≤ c < N , there is a FOIL structure ξ satisfying the

following:
ξ |=FOIL ψ ∧ send(c) ∧ ∀j :: type0 : j 6= c. receive(j).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Applications. Theorem 5.3 gives a criterion for identifying parameterized BIP models in
which all components may send and receive broadcast. Its implications are two-fold. First,
it is well-known that parameterized model checking of safety properties is decidable [1] (cf.
the discussion in [17]), and there are tools for well-structured transition systems applicable
to model checking of parameterized BIP. Second, parameterized model checking of liveness
properties is undecidable [17]. From the user perspective, this indicates the need to construct
abstractions, or to use semi-decision procedures.

Identifying sending and receiving ports. Now we illustrate how to automatically detect
the sending and receiving ports in a parameterized BIP model. We say that a port p ∈ P0 in
the component type may be a sending port, if in every interaction exactly one component
uses this port. Similarly, we say that a port q ∈ P0 in the component type may be a receiving
port, if in every interaction all but one component use this port. Intuitively, we have to
enumerate all port types and check whether they are acting as sending ports or receiving
ports. Formally, to find whether p is a potential sending port and q is a potential receiving
port, we check whether the following is valid:

ψ ∧ ηFOIL
interaction ∧ ∃i :: type0.

(
p(i) ∨ q(i)

)
→
(
∃i :: type0. p(i) ∧ ∀j :: type0 : j 6= i. q(j)

)

5.4 Token rings
Token ring is a classical architecture: (i) all processes are arranged in a ring, (ii) the ring
size is parameterized but fixed in each run, and (iii) one component owns the token and
can pass the token to its neighbor(s). It is easy to express token-passing with rendezvous,
so we re-use the templates from Section 5.2. We assume that there is a pair of ports: the
port send giving away the token and the port receive accepting the token. We do not allow
the token to change its type, as the parameterized model checking problem is undecidable in
this case [26, 16]. Nevertheless, it is easy to extend our results to multiple token types. Here
the token is passed in one direction, that is, every component may only receive the token
from one neighbor and may only send the token to its other neighbor.

TL-templates. Following the standard assumption [16], we require that every process sends
and receives the token infinitely often. We encode this requirement as a local constraint in a
form of an LTL formula that is checked against the component type (and not against a BIP
instance):

G
(
receive→ X (¬receive U send)

)
∧G

(
send→ X

(
¬send U receive)

)

207

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:13

The left conjunct forces a component that has the token to eventually send it. The right
conjunct prevents a component from sending the token twice before receiving it back.

FOIL-templates. We extend the pairwise rendezvous templates with a formula ηFOIL
uniring(P0)

that restricts the interactions to be performed only among the neighbors in one direction:

∃i, j :: type0. (j = (i+ 1) mod n0). send(i) ∧ receive(j)

The modulo notation “j = (i+ 1) mod n0” can be seen as syntactic sugar, as it expands
into (i = n0 − 1→ j = 0) ∧ (i < n0 − 1→ j = i+ 1).

I Theorem 5.4. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction)↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ∧ ηFOIL

uniring) is valid, then every instance BN,Γ
satisfies:
1. every interaction γ ∈ Γ is of the form {send(c), receive(d)} for some indices c and d such

that 0 ≤ c, d < N and d = (c+ 1) mod N , and
2. for every index c such that 0 ≤ c < N and the index d = (c+ 1) mod N , there is a FOIL

structure ξ such that ξ |=FOIL ψ ∧ send(c) ∧ receive(d).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Distributing the token. The token ring architecture assumes that initially only one com-
ponent has the token. Emerson & Namjoshi [16] assumed that the token was distributed
using a “daemon”, but this primitive is obviously outside of the token ring architecture. Our
framework encompasses token distribution. To this end, we restrict the transition system of
the component as follows:

We assume that the location set Q0 of the component type B0 is partitioned into two
sets: Qtok0 is the set of locations possessing the token, and Qntok0 is the set of locations
without the token. The initial location does not possess the token: `0 ∈ Qntok0 .
We assume that there are two auxiliary ports called master and slave that are only used
in a transition from the initial location `0. There are only two transitions involving `0:
the transition from `0 to a location in Qtok0 that broadcasts via the port master , and the
transition from `0 to a location in Qntok0 that receives the broadcast via the port slave. The
broadcast interaction can be checked with the constraints similar to those in Section 5.3.

Applications. Theorem 5.4 gives us a criterion for identifying parameterized BIP models
that express a unidirectional token ring. This criterion has a great impact: one can apply
non-parameterized BIP tools to verify parameterized BIP designs expressing token rings.
As Emerson & Namjoshi showed in their celebrated paper [16], to verify parameterized
token rings, it is sufficient to run model checking on rings of small sizes. The bound on the
ring size—called a cut-off—depends on the specification and typically requires two or three
components.

5.5 Pairwise rendezvous in a star
In a star architecture, one component acts as the center, and the other components commu-
nicate only with the center. The components communicate via rendezvous (considered in
Section 5.2). This architecture is used in client-server applications. Parameterized model
checking for the star architecture was investigated by German & Sistla [18]. We assume
that a parameterized BIP model contains two component types: B0 with only one instance,
and B1 that may have many instances.

CONCUR 2016

208

30:14 Parameterized Systems in BIP: Design and Model Checking

Table 1 Experimental results of identifying architecture models. The column “Outcome” indicates,
whether the benchmark was recognized to have the given architecture (positive), or not (negative).
The experiments were performed on a 64-bit Linux machine with 2.8GHz × 4 CPU and 7.8GiB
memory.

Benchmark Architecture model Outcome Time (sec.) Memory (MB)
Milner’s scheduler uni-directional token ring positive 0.068 ≤ 10
Milner’s scheduler broadcast in clique negative 0.016 ≤ 10
Semaphore pairwise rendezvous in star positive 0.096 ≤ 10
Semaphore pairwise rendezvous in clique negative 0.084 ≤ 10
Barrier broadcast in clique positive 0.028 ≤ 10
Barrier pairwise rendezvous in star negative 0.008 ≤ 10

FOIL-templates. The requirements of rendezvous communication are defined in Section 5.2.
We add the restriction ηFOIL

center that the center is involved in every interaction:
∃i :: type0. active0(i). By restricting ε to have only one instance of type B0, we arrive
at Theorem 5.5, which to a large extent is a consequence of Theorem 5.2.

I Theorem 5.5. Given a two-component parameterized BIP model 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉,
if (ψ ∧ ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ∧ ηFOIL

center) and ε ↔ (n0 = 1) are both valid,
then every instance 〈B0,B1〉〈N0, N1〉,Γ admits only the rendezvous interactions with the center,
i.e., the only component of type B0.

Applications. Theorem 5.5 gives us a criterion for identifying parameterized BIP models,
where the user processes communicate with the coordinator via rendezvous. To verify such
parameterized BIP models, we can immediately invoke several results by German & Sistla [18,
Sec. 3]. First, one can analyze such parameterized BIP models for deadlocks, which is of
extreme importance to the practical applications of BIP. Second, the results [18] reduce
parameterized model checking to reachability in Petri nets, which allows one to use the
existing tools for Petri nets.

6 Prototype implementation and experiments

We have implemented a prototype of the framework introduced in Section 5. This prototype
uses the following architecture templates: (a) pairwise rendezvous and broadcast in cliques,
(b) token rings, (c) and pairwise rendezvous in stars. As described in Section 5 (see our
framework), given a parameterized BIP model, the tool constructs a set of FOIL formulae and
a set of temporal formulae. The parameterized BIP model follows a predefined architecture,
if the FOIL formulae are valid and the component types satisfy the temporal formulae. Our
implementation uses nuXmv [11] to check temporal formulae and Z3 [14] to check validity of
first-order formulae. FOIL formulae are translated to first-order formulae by guarding the
range of quantification explicitly, e.g. ∃i :: type0. θ is substituted with ∃i. 0 ≤ i < n0 ∧ θ. To
deal with quantifiers, we run a customized solver with tactic ’qe’ (i.e. quantifier elimination).
The implementation and benchmarks are available at http://risd.epfl.ch/parambip.

Table 1 summarizes our experiments with three benchmarks. We conducted each exper-
iment using two kinds of templates: the expected architecture of the benchmark, and an
architecture different from the expected one. In all cases, the architectures were identified
as expected. Our preliminary results demonstrate both correctness and efficiency of our
approach.

209

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:15

7 Related work and conclusions

We have shown that our framework encompasses several prominent parameterized model
checking techniques. To our understanding, the other seminal results can be integrated into
our framework: the cut-off results for disjunctive and conjunctive guards [15], network de-
composition techniques [13, 3], and techniques based on well-structured transition systems [1]
and monotonic abstraction [2].

First-order interaction logic extends propositional interaction logic [6, 7], which was
also extended by Dy-BIP [10] and configuration logic [21]. Dy-BIP extends propositional
interaction logic with quantification to define interaction topology independent of the number
of component instances. It uses dedicated history variables to break the symmetry and
specify that, throughout the system execution, successive interactions happen among the
same components. Dy-BIP does not have a mechanism, such as indexing, to statically
distinguish instances of the same component type. Hence, many architectures, e.g., token
rings, cannot be expressed. Configuration logic uses higher-order formulae to represent sets
of topologies. It does not use indexing either, thereby requiring the second-order extension
to express simple architectures such as token rings and linear architectures. Finally, no
decidability results or decision procedures have been proposed for the configuration logic yet.

In the future, we will study second-order extensions of FOIL to express more complex
architectures such as server-client whose coordinator is chosen non-deterministically. In
the long term, we plan to implement a tool that integrates multiple parameterized model
checking techniques and uses our framework to guide the verification of parameterized BIP
designs. FOIL can also be seen as a specification language for BIP interactions and used
for their synthesis similarly to [7]. Finally, it is worth investigating, whether FOIL can be
extended to include priorities as in [8].

References
1 P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems for

infinite-state systems. In LICS, 1996.
2 P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Monotonic abstraction: on

efficient verification of parameterized systems. Int. J. Found. Comput. Sci., 2009.
3 B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking of

rendezvous systems. In CONCUR. Springer, 2014.
4 A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen, and J. Sifakis. Rigorous

component-based system design using the BIP framework. Software, IEEE, 2011.
5 S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and Q. Wang. Formal

verification of infinite-state BIP models. In ATVA, 2015.
6 S. Bliudze and J. Sifakis. The algebra of connectors —structuring interaction in BIP. In

EMSOFT, 2007.
7 S. Bliudze and J. Sifakis. Causal semantics for the algebra of connectors. FMSD, 2010.
8 S. Bliudze and J. Sifakis. Synthesizing glue operators from glue constraints for the con-

struction of component-based systems. In Software Composition, 2011.
9 R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decid-

ability of parameterized verification. Synthesis Lectures on Distributed Computing Theory,
2015.

10 M. Bozga, M. Jaber, N. Maris, and J. Sifakis. Modeling dynamic architectures using Dy-
BIP. In Software Composition. Springer, 2012.

11 R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuXmv symbolic model checker. In CAV, 2014.

CONCUR 2016

210

30:16 Parameterized Systems in BIP: Design and Model Checking

12 E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
13 E. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition. In

CONCUR, 2004.
14 L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
15 E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS, 2003.
16 E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, 1995.
17 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. LICS, 1999.
18 S. M. German and A. P. Sistla. Reasoning about systems with many processes. J. ACM,

1992.
19 O. Grumberg and H. Veith. 25 years of model checking: history, achievements, perspectives.

Springer, 2008.
20 J. Y Halpern. Presburger arithmetic with unary predicates is π1

1 complete. J. of Symb.
Logic, 1991.

21 A. Mavridou, E. Baranov, S. Bliudze, and J. Sifakis. Configuration logics: Modelling
architecture styles. In FACS, 2015.

22 Q.Wang and S. Bliudze. Verification of component-based systems via predicate abstraction
and simultaneous set reduction. In TGC, 2015.

23 S. Schmitz and P. Schnoebelen. The power of well-structured systems. In CONCUR, 2013.
24 J. Sifakis. Rigorous system design. Foundations and Trends in Electr. Design Automation,

2013.
25 J. Sifakis. System design automation: Challenges and limitations. Proc. of the IEEE, 2015.
26 I. Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett., 1988.
27 W. Thomas. Languages, automata, and logic. Springer, 1997.

211

212

Part V

Supplementary Documents

213

Chapter 9

Curriculum Vitae

215

Igor KONNOV
INRIA Nancy & LORIA

Equipe VeriDis, Bâtiment B

615, rue du Jardin Botanique

F-54602 Villers-lès-Nancy, France

Homepage: http://forsyte.at/konnov

Phone: +33 (0)3-83-59-30-75

Born in 1981. Married, with one child.
Languages: English (fluent), German (ÖSD Zertifikat B2), Russian (mother tongue), French (beginner)
Research interests: software verification, model checking, parameterized model checking,

verification of distributed algorithms, temporal logic of actions (TLA+)

Appointments

INRIA Nancy — Grand Est, Nancy, France:

Mar 2018 – present. Researcher (permanent, chargé de recherche)

Vienna University of Technology (TU Wien), Faculty of Informatics, Austria:

Jan 2016 – Feb 2018. Postdoctoral researcher, principal investigator in the WWTF project APALACHE

Dec 2011 – Dec 2015. Postdoctoral assistant professor (Universitätsassistent, limited contract)

Jul 2011 – Dec 2011. Postdoctoral researcher (Projektassistent)

Moscow State University (MSU), Faculty of Computational Mathematics and Cybernetics, Russia:

Jan 2010 – Jun 2011. Junior research fellow (m.n.s.)

Dec 2006 – Jan 2010. Pre- and postdoctoral research and teaching assistant

Sytech LLC, Russia: 2006–2010, Part-time systems architect, 2004–2006, Software developer

IFirst LLC, Russia: 01.09.2002–15.09.2003, Part-time programmer

Higher education

Oct 2003– Nov 2008. Moscow State University, Russia:
Ph.D. in Computer Science (awarded in Feb 2009)

Sep 1998– Jul 2003. Moscow State University, Russia:
Specialist (approx. MSc) in Applied Math. & Informatics

With distinction, 97% are the best score: avg. score 1.06 (German scale) = avg. score 4.87 (Russian scale)

Project acquisition and participation

2016–2019. WWTF: Vienna Science and Technology Fund. Project ICT15–103 APALACHE 539ke
Abstraction-based Parameterized TLA Checker TU Wien
Role: principal investigator, with: J.Widder (co-PI), H. Veith (core team)
Acceptance rate: 10 out of 137 proposals (approx. 7%)

2015–2018. FWF: Austrian National Research Network S11403-N23 SHiNE
Systematic Methods in Systems Engineering TU Wien
Role: researcher, Coordinator: R. Bloem (3.7 Mio.e), PI: H. Veith 625ke

216

Igor KONNOV 2

2011–2014. WWTF: Vienna Science and Technology Fund. Project PROSEED 598ke
Proof Seeding for Software Verification TU Wien
Role: researcher, PI: H. Veith

2010–2014. FWF: Austrian National Research Network S11403-N23 RiSE
Rigorous Systems Engineering TU Wien
Role: researcher, Coordinator: R. Bloem (3.7 Mio.e), PI: H. Veith 582.8ke

2010–2012. Russian Federal Special-Purpose Programme, Project 14.740.11.0399 approx. 200ke
Developing a Prototype for Computer Simulation of Real-Time Distributed Systems MSU
Role: responsible for coordination, research agenda, and report writing, PI: R.L. Smeliansky

2009–2011. RFBR: Russian Fund for Basic Research, Project Nr. 09–01–00277-a approx. 32ke
Structural and Semantic Analisys Using Formal Models of Sequential and Parallel Processes MSU
Role: researcher, PI: R.I. Podlovchenko

2006–2009. INTAS: EU research cooperation with the New Independent States, Project Nr. 05–1000008–8144
Practical Formal Verification Using Automated Reasoning and Model Checking MSU
Role: researcher, Coordinator: T. Jebelian, PI: V.E. Plisko

2006–2008. RFBR: Russian Fund for Basic Research, Project Nr. 06–01–00106-a approx. 52ke
Formal Models of Sequential and Parallel Processes and the Analysis of Their Semantic Properties MSU
Role: researcher, PI: R.I. Podlovchenko

R&D projects with industry and state companies

2009–2010. Obfuscation techniques on intermediate code representation Computer Systems Lab/MSU
Role: team lead of 1 master student and 1 PhD student, PI: R.L. Smeliansky

2007–2008. Obfuscation techniques for C++ Computer Systems Lab/MSU
Role: team lead of 1 master student and 1 PhD student, PI: R.L. Smeliansky

2008. Teachable static analysis workbench The Open Web Application Security Project (OWASP)
Role: developer, PI: D.D. Kozlov

2007–2008. Static analysis of python web applications for vulnerabilities Computer Systems Lab/MSU
Role: developer, PI: R.L. Smeliansky

Selected invited talks & lectures

Dagstuhl Seminar 18211: “Formal Methods and Fault-Tolerant Distributed Computing: Forging an Alliance”
Dagstuhl/Germany, invited tutorial What my computer can find about your distributed algorithm May 2018

Bertrand Meyer’s Vericlub seminar, U. Toulouse, Toulouse/France Nov 2016
invited seminar talk Model checking of threshold-guarded distributed algorithms: beyond reachability

Rigorous System Design Laboratory, EPFL, Lausanne/Switzerland Sep 2016
invited seminar talk Model checking of fault-tolerant distributed algorithms: safety and liveness

Workshop on Program Semantics, Specification & Verification at CSR’16, St. Petersburg/Russia
invited talk Model checking of threshold-based fault-tolerant distributed algorithms Jun 2016

217

Igor KONNOV 3

Spring School Logic & Verification, Vienna/Austria Apr 2016
lectures on Complete parameterized & bounded model checking of threshold-based fault-tolerant distributed algo-
rithms

Amazon, Herndon, VA/USA Jun 2015
invited talk Model checking of threshold-based fault-tolerant distributed algorithms

Dagstuhl Seminar: “Distributed Cloud Computing”, Dagstuhl/Germany Feb 2015
talk Model checking of threshold-based fault-tolerant distributed algorithms

Tools & Methods of Program Analysis’14, Kostroma/Russia Nov 2014
invited talk Parameterized model checking of fault-tolerant distributed algorithms by abstraction

Summer School’14: “Verification Technology, Systems & Applications”, Luxembourg Oct 2014
lectures on Model checking of fault-tolerant distributed algorithms (together with Helmut Veith)

Dagstuhl Seminar: “Formal Verification of Distributed Algorithms”, Dagstuhl/Germany Apr 2013
invited talk Counter attack on Byzantine generals

Concurrency Seminar, Computing Laboratory, Oxford/UK Feb 2011
invited talk An invariant-based approach to the verification of asynchronous parameterized networks

Teaching experience

Vienna University of Technology (TU Wien)

2013–2017. Computer Aided Verification Master students, compulsory, lectures & practicals, 3 ECTS
In 2017, held the lecture course. Until 2017, read parts of the lecture course, teaching assistance.

2013–2017. Program & Systems Verification Bachelor students, compulsory, lectures & practicals, 6 ECTS
Teaching assistance

2011–2015. Formal Methods of Informatics Master students, compulsory, lectures & practicals, 6 ECTS
Teaching assistance

Moscow State University (MSU)

2008–2010. Software model checking (Dr. Savenkov) 8th semester, compulsory, lectures & seminars, 32 hrs.
Designed the course together with K. Savenkov, read parts of the lecture course, teaching assistance

2004. Seminars on The C Programming Language and UNIX 3rd semester, compulsory, 32 hrs.
Instructed at all seminars (approx. 20 students)

2005. Seminars on Syntax Analysis and C++ 4th semester, compulsory, 32 hrs.
Instructed at all seminars (approx. 20 students)

2004. Operating Systems (Prof. Terekhov) 3rd semester, compulsory, lectures, 54 hrs.
Teaching assistance

2003–2011. Computer Networks (Prof. Smeliansky) 6th semester, compulsory, lectures, 64 hrs.
Teaching assistance

2003–2004. The Java Programming Language optional, lectures, 32 hrs.
Read parts of the lecture course, teaching assistance

218

Igor KONNOV 4

2003–2004. MSU math entrance exams compulsory
Corrected written math exams, participated in the oral math exams

Kazakhstan branch of Moscow State Univ., Astana/Kazakhstan

2011. Software model checking 8th semester, compulsory, lectures & seminars, 32 hrs.
held the lecture course and the seminars

Tashkent University, Tashkent/Uzbekistan

2011–2013. Participated in EU project CANDI: Teaching Competency & Infrastructure for e-Learning and Re-

training

Advising

PhD students (TU Wien): Associated Faculty of Doctoral College LogiCS [logic-cs.at]

2016–present. Thanh Hai Tran (advising) with Priv.-Doz. Dr. Josef Widder

2016–present. Jure Kukovec (advising) with Priv.-Doz. Dr. Josef Widder

2015–present. Marijana Lazić (co-advising) with Prof. Roderick Bloem, Priv.-Doz. Dr. Josef Widder

2011–2014. Annu Gmeiner (informal co-advising)
Parameterized model checking of fault-tolerant distributed algorithms advisor: Prof. Helmut Veith

Master students:

2016. Jure Kukovec (Univ. Ljubljana)
Extensions of Threshold Automata for Reachability in Parameterized Systems co-advised with Prof. Andrej Bauer

2015–2016. Thanh Hai Tran (TU Wien)
User-guided Predicate Abstraction of TLA+ Specifications co-advised with Prof. Helmut Veith

2009–2011. Alexander Mischenko (MSU)
Static Type Analysis of Python Programs on Bytecode Level

2007–2009. Denis Sigaev (MSU)
Detection of Programs Protected from Reverse Engineering co-advised with A. Kachalin

2008. Alexey Schevchenko (MSU)
Application of Regular Model Checking to Infinite State Systems

2007. Peter Bulychev (MSU)
Game-Theoretic Methods of Protocol Verification co-advised with Prof. Vladimir Zakharov

Bachelor students:

2013. Sebastian Neumaier (TU Wien) A Simple Simulation Language for Distributed Algorithms

2011. Andrey Babak and Anton Artyomov (MSU) Static Analysis of Python Programs

Community service

Program Committees:

ACM Symposium on Principles of Distributed Computing (PODC’18) London/UK

219

Igor KONNOV 5

Formal Methods in Computer-Aided Design (FMCAD) 2017 & 2018 Vienna/Austria & Austin/TX, US

Computer Aided Verification’16 (External Reviewer Committee) Toronto/Canada

Symbolic and Numeric Algorithms for Scientific Computing 2013, 2016, and 2017 Timisoara/Romania

Stabilization, Safety, and Security of Distributed Systems’15 Edmonton/Canada

Intl. Conf. on Verification & Evaluation of Computer & Comm. Systems (VECoS’18) Grenoble/France

Intl. Symposium on Formal Approaches to Parallel & Distributed Systems (4PAD) 2018 Orléans/France

Workshop on Methods and Tools for Rigorous System Design (MeTRiD’18) Thessaloniki/Greece

Tools & Methods of Program Analysis 2015 & 2017 St. Petersburg & Moscow/Russia

Workshop on Program Semantics, Specification, and Verification 2017 & 2018 Moscow & Yaroslavl/Russia

Parallel, Distributed, and Network-based Processing’17 (Formal approaches track) St. Petersburg/Russia

Artifact Evaluation Chair: Computer-Aided Verification (CAV’18) [cavconference.org/2018/]

Journal and book chapter reviews: FMSD (2018), LMCS (2017), ACM ToCL (2017), MAIS (2017), TIME
(2015),
Handbook of Model Checking (eds. E. Clarke, T. Henzinger, H. Veith)

Guest editor: Special issue on Computer Aided Verification’13 in Formal Methods in System Design (Springer)
(with Helmut Veith and Natasha Sharygina)

Editorial board: Proceedings of the Institute for System Programming of the Russian Academy of Sciences
since 2016 [www.ispras.ru/en/proceedings]

External reviewer: FSTTCS’17, QEST’17, TACAS’17, STACS’17, VMCAI’17, MARS’17, ICFEM’16, CON-
CUR’16, IJCAR’16, LICS’16, EuroPar’16, AAMAS’16, CAV’15, FMCAD’15, TACAS’15, FoSSaCS’15, CAV’14,
SAS’14, GandALF’14, ESOP’14, HVC’14, CAV’13, LATA’13, SSS’13, CAV’12, NFM’12, SPIN’12, VMCAI’12,
FMICS’11, CSL’11

Workshop chair of CAV’13. Conference on Computer Aided Verification [cav2013.forsyte.at]

Co-organizer of FRIDA’14–18. Workshop on Formal Reasoning in Distributed Algorithms:

FRIDA’18, July 13, 2018. Co-located with CAV’18 [forsyte.at/events/frida2018]

FRIDA’17, October 16, 2017. Co-located with DISC’17 [forsyte.at/events/frida2017]

FRIDA’16, May 17, 2016. Co-located with NETYS’16 [forsyte.at/events/frida2016]

FRIDA’15, June 5, 2015. Co-located with FORTE’15 [discotec2015.inria.fr/workshops/frida-2015/]

FRIDA’14, July 23–24, 2014. Co-located with CAV’14 [vsl2014.at/frida/]

Student Award Committee. VCLA International Student Awards 2014–2015

Tools

2012–present. ByMC: model checker of parameterized fault-tolerant distributed algorithms
[forsyte.at/software/bymc]

2004–2009. CheAPS: model checker of parameterized asynchronous distributed systems
[lvk.cs.msu.su/~konnov/cheaps]

220

Chapter 10

List of Publications

221

Publications by Igor Konnov

Book
[1] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decidability of Parameterized

Verification. Vol. 6. 1. Morgan & Claypool, 2015, pp. 1–170. doi: 10.2200/S00658ED1V01Y201508DCT013.

Book chapter
[2] A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and J. Widder. “Tutorial on Parameterized Model Checking of

Fault-Tolerant Distributed Algorithms”. In: Formal Methods for Executable Software Models. LNCS. Springer,
2014, pp. 122–171. doi: 10.1007/978-3-319-07317-0_4.

Invited paper
[3] I. Konnov, H. Veith, and J. Widder. “What You Always Wanted to Know About Model Checking of Fault-

Tolerant Distributed Algorithms”. In: Perspectives of System Informatics: PSI 2015, in Memory of Helmut
Veith, Revised Selected Papers. Springer, 2016, pp. 6–21. doi: 10.1007/978-3-319-41579-6_2.

Journal articles
[4] I. V. Konnov, H. Veith, and J. Widder. “On the completeness of bounded model checking for threshold-based

distributed algorithms: Reachability”. In: Information and Computation 252 (2017). (Extended version of
the conference paper I. Konnov, H. Veith, J. Widder. “On the Completeness of Bounded Model Check-
ing for Threshold-Based Distributed Algorithms: Reachability”. In Concurrency Theory – 25th International
Conference, CONCUR, 2014, pp. 125–140), pp. 95–109. doi: 10.1016/j.ic.2016.03.006.

[5] I. Konnov, M. Lazic, H. Veith, and J. Widder. “Para2: Parameterized Path Reduction, Acceleration, and
SMT for Reachability in Threshold-Guarded Distributed Algorithms”. In: Formal Methods in System Design
(2017). (Extended version of the conference paper I. Konnov, H. Veith, J. Widder. “SMT and POR
Beat Counter Abstraction: Parameterized Model Checking of Threshold-Based Distributed Algorithms”. In
Computer-Aided Verification, vol. 9206, LNCS, 2015, pp. 85–102.) doi: 10.1007/s10703-017-0297-4. url:
https://link.springer.com/article/10.1007/s10703-017-0297-4.

[6] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. “Decidability in Parame-
terized Verification”. In: ACM SIGACT News 47.2 (2016), pp. 53–64. doi: 10.1145/2951860.2951873.

[7] D. Y. Volkanov, V. A. Zakharov, D. A. Zorin, V. V. Podymov, and I. V. Konnov. “A combined toolset for the
verification of real-time distributed systems”. In: Programming and Computer Software 41.6 (2015), pp. 325–
335. doi: 10.1134/S0361768815060080.

[8] I. Konnov, V. Podymov, D. Volkanov, V. Zakharov, and D. Zorin. “How to Make a Simple Tool for Verification
of Real-Time Systems”. In: Automatic Control and Computer Sciences 48.7 (2014), pp. 534–542. doi: 10.
3103/S0146411614070232.

[9] I. V. Konnov. “On application of weaker simulations to parameterized model checking by network invari-
ants technique”. In: Automatic Control and Computer Sciences 44.7 (2010), pp. 378–386. doi: 10.3103/
S0146411610070035.

[10] I. V. Konnov and V. A. Zakharov. “An invariant-based approach to the verification of asynchronous parame-
terized networks”. In: Journal of Symbolic Computation 45.11 (2010), pp. 1144–1162. doi: 10.1016/j.jsc.
2008.11.006.

[11] I. V. Konnov and V. A. Zakharov. “Using Adaptive Symmetry Reduction for LTLModel Checking”. In Russian.
In: Modelling and Analysis of Information Systems 17.4 (2010), pp. 78–87. url: http://www.mathnet.ru/
php/archive.phtml?wshow=paper&jrnid=mais&paperid=38&option_lang=eng.

[12] I. V. Konnov and V. A. Zakharov. “An Approach to the Verification of Symmetric Parameterized Distributed
Systems”. In: Programming and Computer Software 31.5 (2005), pp. 225–236. doi: 10.1007/s11086-005-
0034-4.

Peer-reviewed conference proceedings
[13] I. Konnov and J. Widder. “ByMC: Byzantine Model Checker”. In: Leveraging Applications of Formal Methods,

Verification and Validation. Distributed Systems. Cham: Springer International Publishing, 2018, pp. 327–342.
doi: 10.1007/978-3-030-03424-5_22. url: https://hal.inria.fr/hal-01909653.

222

Igor KONNOV 2

[14] J. Kukovec, I. Konnov, and J. Widder. “Reachability in Parameterized Systems: All Flavors of Threshold
Automata”. In: 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018,
Beijing, China. 2018, 19:1–19:17. doi: 10.4230/LIPIcs.CONCUR.2018.19. url: https://doi.org/10.4230/
LIPIcs.CONCUR.2018.19.

[15] J. Kukovec, T. Tran, and I. Konnov. “Extracting Symbolic Transitions from TLA+ Specifications”. In: Abstract
State Machines, Alloy, B, TLA, VDM, and Z. 2018, pp. 89–104. doi: 10.1007/978-3-319-91271-4_7. url:
http://forsyte.at/wp-content/uploads/abz2018_full.pdf.

[16] I. V. Konnov, M. Lazic, H. Veith, and J. Widder. “A short counterexample property for safety and liveness
verification of fault-tolerant distributed algorithms”. In: Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. 2017, pp. 719–
734. url: http://dl.acm.org/citation.cfm?id=3009860.

[17] I. V. Konnov, J. Widder, F. Spegni, and L. Spalazzi. “Accuracy of Message Counting Abstraction in Fault-
Tolerant Distributed Algorithms”. In: Verification, Model Checking, and Abstract Interpretation - 18th Inter-
national Conference, VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings. 2017, pp. 347–366. doi:
10.1007/978-3-319-52234-0_19.

[18] M. Lazic, I. Konnov, J. Widder, and R. Bloem. “Synthesis of Distributed Algorithms with Parameterized
Threshold Guards”. In: OPODIS. Vol. 95. LIPIcs. 2017, 32:1–32:20. url: https://doi.org/10.4230/
LIPIcs.OPODIS.2017.32.

[19] I. Konnov, T. Kotek, Q. Wang, H. Veith, S. Bliudze, and J. Sifakis. “Parameterized Systems in BIP: Design and
Model Checking”. In: 27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26,
2016, Québec City, Canada. Vol. 59. LIPIcs. 2016, 30:1–30:16. doi: 10.4230/LIPIcs.CONCUR.2016.30.

[20] I. Konnov, H. Veith, and J. Widder. “SMT and POR beat Counter Abstraction: Parameterized Model Checking
of Threshold-Based Distributed Algorithms”. In: CAV (Part I). Vol. 9206. LNCS. 2015, pp. 85–102. doi:
10.1007/978-3-319-21690-4_6.

[21] I. Konnov, H. Veith, and J. Widder. “On the Completeness of Bounded Model Checking for Threshold-
Based Distributed Algorithms: Reachability”. In: CONCUR 2014. Vol. 8704. LNCS. 2014, pp. 125–140. doi:
10.1007/978-3-662-44584-6_10.

[22] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. “Brief announcement: parameterized model checking
of fault-tolerant distributed algorithms by abstraction”. In: PODC. 2013, pp. 119–121. doi: 10.1145/2484239.
2484285.

[23] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. “Parameterized model checking of fault-tolerant dis-
tributed algorithms by abstraction”. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013. 2013, pp. 201–209. doi: 10.1109/FMCAD.2013.6679411.

[24] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. “Towards Modeling and Model Checking Fault-
Tolerant Distributed Algorithms”. In: Model Checking Software - 20th International Symposium, SPIN 2013,
Stony Brook, NY, USA, July 8-9, 2013. Vol. 7976. LNCS. 2013, pp. 209–226. doi: 10.1007/978-3-642-
39176-7_14.

[25] I. V. Konnov. “Application of CHEAPS System to Parameterized Model Checking of Distributed Systems”.
In Russian. In: Proc. 3rd All-Russia Conf. on Methods and Techniques of Information Processing. Moscow,
2009, pp. 116–122. isbn: 978-5-89407-373-3.

[26] V. A. Zakharov and I. V. Konnov. “On the Verification of Asynchronous Parameterized Distributed Programs”.
In Russian. In: Proc. 2nd All-Russia Conf. on Methods and Techniques of Information Processing. MAKS
Press, Moscow, 2005, pp. 267–372. isbn: 5-89407-230-1.

[27] I. V. Konnov and V. A. Zakharov. “On the Verification of Parameterized Symmetric Distributed Programs”.
In Russian. In: Proc. 1st All-Russia Conf. on Methods and Techniques of Information Processing. MAKS
Press, Moscow, 2003, pp. 395–400. isbn: 5-89407-163-1.

Peer-reviewed workshop contributions
[28] I. Konnov, J. Kukovec, and T.-H. Tran. BmcMT: Bounded Model Checking of TLA+ Specifications with

SMT. Contribution to TLA+ Community Meeting, Oxford, UK, July. 2018. url: http://tla2018.loria.
fr/contrib/konnov.pdf.

[29] I. Konnov and S. Merz. Model Checking of Fault-Tolerant Distributed Algorithms: from Classics towards Con-
temporary. Contribution to DSN Workshop on Byzantine Consensus and Resilient Blockchains, Luxembourg
City, Luxembourg, June. 2018. url: https://bcrb18.fim.uni-passau.de/shortpapers/bcrb18-konnov-
merz.pdf.

223

Igor KONNOV 3

[30] I. Konnov, H. Veith, and J. Widder. Challenges in Model Checking of Fault-tolerant Designs in TLA+.
Contribution to the 8th International Workshop on Exploiting Concurrency Efficiently and Correctly, San
Francisco, CA, USA, July. 2015. url: http://multicore.doc.ic.ac.uk/events/ec2/KonnovVeithWidder.
pdf.

[31] I. Konnov. “CheAPS: a Checker of Asynchronous Parameterized Systems”. In: WING 2010. Ed. by A.
Voronkov, L. Kovacs, and N. Bjorner. Vol. 1. EPiC Series. EasyChair, 2012, pp. 128–129. url: http://
www.easychair.org/publications/?page=355792421.

[32] I. V. Konnov and V. A. Zakharov. “Using Adaptive Symmetry Reduction for LTL Model Checking”. In: Proc.
International Workshop on Program Semantics, Specification and Verification (PSSV 2010) affiliated with
CSR 2010. 2010, pp. 5–11. url: http://csr2010.ksu.ru/PSSV.html.

[33] V. Zakharov and I. Konnov. “An Invariant-based Approach to the Verification of Asynchronous Parameterized
Networks”. In: International Workshop on Invariant Generation (WING’07). 2007, pp. 41–55. url: http:
//www.risc.uni-linz.ac.at/publications/download/risc_3128/proceedings.pdf.

Conference contributions
[34] V. V. Antonenko and I. V. Konnov. “On the Choice of a Simulation Run-Time Infrastructure based on

High-Level Architecture”. In Russian. In: 17th International Conference on Computational Mechanics and
Contemporary Application Software Systems 2011 (VMSPPS’2011), Alushta, Ukraine. 2011, pp. 36–38. isbn:
978-5-7035-2269-1.

[35] G. A. Klimov, D. D. Kozlov, and I. V. Konnov. “Static analysis for security of web applications developed in
Python”. In Russian. In: Proc. 5th All-Russia Scientific and Technical Conf. Microsoft technologies in theory
and practice of programming. 2008.

[36] I. V. Konnov. “The system for verfication of parameterized models of asynchronous distributed systems
(CHEAPS)”. In Russian. In: Proc. 5th All-Russia Scientific and Technical Conf. Microsoft technologies in
theory and practice of programming. 2008.

Workshop contributions
[37] I. Konnov. Towards symbolic model checking of fault-tolerant designs in TLA+. Talk at the Helmut Veith

Memorial Workshop, Obertauern, Austria, January. 2018. url: http://hvw2018.cs.uni-salzburg.at/
schedule.

[38] I. Konnov. Verifying Safety and Liveness of Threshold-guarded Fault-Tolerant Distributed Algorithms. Talk at
the Helmut Veith Memorial Workshop, Obergurgl, Austria, February. 2017. url: http://cbr.uibk.ac.at/
events/hvw/schedule.php.

[39] I. Konnov. SMT and POR beat Counter Abstraction: Parameterized Model Checking of Threshold-based Dis-
tributed Algorithms. Workshop contribution at Alpine Verification Meeting, Attersee, Austria, May. 2015.

[40] A. B. Glonina, I. Konnov, V. V. Podymov, D. Y. Volkanov, V. A. Zakharov, and D. A. Zorin. An experience on
using simulation environment DYANA augmented with UPPAAL for verification of embedded systems defined
by UML statecharts. Contribution to the CAV workshop VES13, St. Petersburg, Russia, July. 2013. url:
http://forsyte.at/wp-content/uploads/ves13-gkpvzz.pdf.

[41] I. Konnov. Parameterized Model Checking by Network Invariants: the Asynchronous Case. Contribution to:
LICS Workshop AISS, Dubrovnik, Croatia, June 2012. 2012. url: http://forsyte.at/wp- content/
uploads/12konnov-aiss.pdf.

[42] I. Konnov, H. Veith, and J. Widder. Who is afraid of Model Checking Distributed Algorithms? Contribution to
the 5th International Workshop on Exploiting Concurrency Efficiently and Correctly, Berkeley, CA, USA, July
2012. 7 citations excl. self-citations. 2012. url: http://forsyte.at/wp-content/uploads/2012/07/ec2-
konnov.pdf.

[43] I. V. Konnov and O. Letichevsky. “Model Checking GARP Protocol using Spin and VRS”. In: International
Workshop on Automata, Algorithms, and Information Technologies. 2010. doi: 10.1007/s10559-010-9244-8.

Technical reports
[44] N. Bertrand, I. Konnov, M. Lazic, and J. Widder. Verification of Randomized Distributed Algorithms under

Round-Rigid Adversaries. Nov. 2018. url: https://hal.inria.fr/hal-01925533.

224

Igor KONNOV 4

[45] I. Stoilkovska, I. Konnov, J. Widder, and F. Zuleger. Verifying Safety of Synchronous Fault-Tolerant Algo-
rithms by Bounded Model Checking. working paper or preprint. Nov. 2018. url: https://hal.inria.fr/hal-
01925653.

[46] I. Konnov, M. Lazic, H. Veith, and J. Widder. A Short Counterexample Property for Safety and Liveness
Verification of Fault-Tolerant Distributed Algorithms. Extended version of the POPL’17 paper including the
proofs. 2016. url: http://arxiv.org/abs/1608.05327.

[47] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Counter Attack on Byzantine Generals: Parame-
terized Model Checking of Fault-tolerant Distributed Algorithms. Oct. 2012. url: http://arxiv.org/abs/
1210.3846.

[48] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Starting a Dialog between Model Checking and
Fault-tolerant Distributed Algorithms. Oct. 2012. url: http://arxiv.org/abs/1210.3839.

[49] P. Bulychev, I. V. Konnov, and V. A. Zakharov. “Computing (bi)simulation relations preserving CTL∗
−X

for ordinary and fair Kripke structures”. In: Mathemathical Methods and Algorithms, Institute of Systems
Programming of the Russian Academy of Sciences. Vol. 12. 2006, pp. 59–76. url: http://discopal.ispras.
ru/pdfs/issue-2006-12/cs-isp-sbornik.pdf.

[50] I. Konnov and V. Zakharov. “On the verification of asynchronous parameterized networks of communicating
processes by model checking”. In: Mathemathical Methods and Algorithms, Institute of Systems Programming
of the Russian Academy of Sciences. Vol. 12. 2006, pp. 37–58. url: http://discopal.ispras.ru/pdfs/
issue-2006-12/cs-isp-sbornik.pdf.

225

Igor KONNOV 5

Invited Talks

Invited speaker at conferences and workshops
[1] I. Konnov. Model Checking of Threshold-based Fault-Tolerant Distributed Algorithms. Invited talk at the

7th Workshop on Program Semantics, Specification & Verification, St. Petersburg, Russia, June. 2016. url:
http://pssv-conf.ru/en/2016/program.

[2] I. Konnov. Parametrized Model Checking of Fault-tolerant Distributed Algorithms by Abstraction. Tutorial at
the International Conference Tools and Methods of Program Analysis, Kostroma, Russia, November. 2014.
url: http://tmpaconf.org/pasteventsmaterialsen/keynote-speakersen#2014.

Tutorials
[3] I. Konnov. Model Checking of Fault-tolerant Distributed Algorithms. Tutorial at the Spring School Logic and

Verification, Vienna, April. 2016. url: http://forsyte.at/events/love2016/.

[4] H. Veith and I. Konnov. Model Checking of Fault-tolerant Distributed Algorithms. Tutorial at the Summer
School on Verification Technology, Systems & Applications, Luxembourg, Luxembourg, October. 2014. url:
http://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa14/.

Invited Seminar Talks
[5] I. Konnov. Synthesizing Distributed Algorithms with Parameterized Threshold Guards. Talk at the Workshop

on Verification of Distributed Systems, Essaouira, Morocco, May. 2018. url: http://netys.net/VDS2018.
html.

[6] I. Konnov. What my computer can find about your distributed algorithm. Tutorial at the Dagstuhl seminar
18211 “Formal Methods and Fault-Tolerant Distributed Computing: Forging an Alliance”, Dagstuhl, Germany,
May. 2018. url: https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18211.

[7] J. Widder and I. Konnov. Logical Methods for the Correctness of Distributed Algorithms. RISE PI talk at
“Alpine Verification Meeting”, Wagrain, Austria, September. 2018. url: https://avm2018.iaik.tugraz.
at/program/.

[8] I. Konnov. Model checking of distributed algorithms for LARGE-scale systems. Interview talk at INRIA
(awarded 1 of 4 researcher positions (CR1) at INRIA), Paris, France, May. 2017.

[9] I. Konnov. Verifying Safety and Liveness of Threshold-guarded Fault-Tolerant Distributed Algorithms. Talk at
LORIA/INRIA seminar, Nancy, France, May. 2017.

[10] I. Konnov. Model Checking of Fault-tolerant Distributed Algorithms: Safety and Liveness. Invited talk at the
Seminar of Rigorous System Design Laboratory, Lausanne, Switzerland, September. 2016.

[11] I. Konnov. Model Checking of Threshold-based Fault-tolerant Distributed Algorithms. Invited talk at the Sem-
inar on Foundations of Mathematics and Theoretical Computer Science, Ljubljana University, Ljubljana,
Slovenia, May. 2016.

[12] I. Konnov. Model Checking of Threshold-Guarded Distributed Algorithms: Beyond Reachability. Invited talk
at the Vericlub Seminar (Bertrand Meyer), Toulouse, France, November. 2016.

[13] I. Konnov. Model Checking of Threshold-based Fault-tolerant Distributed Algorithms. Invited talk at Amazon,
Herndon, VA, USA, June. 2015.

[14] I. Konnov. Model checking of threshold-based fault-tolerant distributed algorithms. Talk at the Dagstuhl Sem-
inar on Distributed Cloud Computing, Dagstuhl, Germany, February. 2015.

[15] I. Konnov. SMT and POR beat Counter Abstraction. Invited talk at the RiSE Seminar at Institute of Science
and Technology Austria, Klosterneuburg, Austria, April. 2015.

[16] I. Konnov. On Completeness of Bounded Model Checking for Threshold-based Distributed Algorithms: Reach-
ability. Talk at the Seminar on Theoretical Problems in Programming, Moscow State University, Moscow,
Russia, February. 2014.

[17] I. Konnov. Counter Attack on Byzantine Generals. Talk at the Dagstuhl Seminar on Formal Verification of
Distributed Algorithms, Dagstuhl, Germany, April. 2013.

[18] I. Konnov. Counter Attack on Byzantine Generals. Talk at the Seminar on Theoretical Problems in Program-
ming, Moscow State University, Moscow, Russia, February. 2013.

226

Igor KONNOV 6

[19] I. Konnov. Who is Afraid of Model Checking Distributed Algorithms. Talk at the PUMA/RiSE Seminar,
Goldegg, Austria, September. 2012.

[20] I. Konnov. An invariant-based approach to the verification of asynchronous parameterized networks. Talk at
the Concurrency Seminar, Computing Laboratory, Oxford University, Oxford, UK, February. 2011.

[21] I. Konnov. Two Techniques of Parameterized Model Checking and Symmetry Reduction. Talk at the RiSE
Seminar, TU Vienna, Vienna, Austria, April. 2011.

[22] I. V. Konnov. CheAPS: Parameterized Model Checking Tool. Joint Workshop of Microsoft Research and
Institute for System Programming Russian Academy of Sciences, Moscow, June 2009. 2009.

227

	Introduction
	Overview of the Results
	I Modeling of Fault-Tolerant Distributed Algorithms and Model Checking by Abstraction
	Towards modeling and model checking fault-tolerant distributed algorithms
	Accuracy of Message Counting Abstraction in Fault-Tolerant Distributed Algorithms
	Parameterized model checking of fault-tolerant distributed algorithms by abstraction

	II Parameterized and Bounded Model Checking of Threshold-Guarded Distributed Algorithms with SMT
	On the completeness of bounded model checking for threshold-based distributed algorithms: Reachability
	Para2: parameterized path reduction, acceleration, and SMT for reachability in threshold-guarded distributed algorithms
	A short counterexample property for safety and liveness verification of fault-tolerant distributed algorithms

	III Parameterized Synthesis of Threshold-Guarded Distributed Algorithms
	Synthesis of Distributed Algorithms with Parameterized Threshold Guards

	IV Parameterized Extension of Behavior-Interaction-Priority Framework
	Parameterized Systems in BIP: Design and Model Checking

	V Supplementary Documents
	Curriculum Vitae
	List of Publications

