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Swiss non-profit foundation

Supports R&D of applications that are:
- secure and scalable
- decentralized

Main focus:
- the Cosmos Network

_ CHSMOS
- Tendermlnt Consensus INTERNET OF BLOCKCHAINS




Cosmos

A decentralized network of independent blockchains
Blockchains are powered by BFT consensus like Tendermint

They communicate over Inter-Blockchain Communication protocol

[cosmos.network/ecosystem]

lgor Konnov 3 of 39



Tendermint @

Byzantine fault-tolerant State Machine Replication middleware
Consensus protocol adapts DLS & PBFT for blockchains:

- wide area network

- hundreds of validators and thousands of nodes

- communication via gossip

efficient and open source

Theory: [arxiv.org/abs/1807.04938]
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[informal.systems]

Verification-Driven Development of Tendermint:
1. PODC-style specifications in English
2. TLA™ specifications (make English formal / fix it)
- model checking for finding bugs in TLA™ specs
3. Implementation in Rust

- model-based testing of the implementation using TLA™ specs

4. Automated verification of TLA™ specs

- [
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Timeline
Q Introduction to fault-tolerant distributed algorithms
G Verifying synchronous threshold-guarded algorithms
Q Veritying asynchronous threshold-guarded algorithms

O Can we verify Tendermint consensus?
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Features of the system

Distributed

logically and geographically

Fault-tolerant

individual machines may crash and even act malicious

Safe and live
e.g., no double spending

every transaction is eventually committed
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How to build such a system?

MNYILEY

Distributed
Computing




sequential code:

int i = 0, j = 1000;

while (true) {
begin_tx();

if (recv(Itol))
{ i -=100; j += 100; }

© o0 N o o0 A W0 DD =

if (recv(Jtol))
{1 += 100; j -= 100; }

—
- O

if (i1 <0 |] j <0)
abort_tx();

else
commit_tx();
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-
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sequential code: state machine:

int i = 0, j = 1000;

while (true) {
begin_tx();

if (recv(ItoJ)) i=100, j=900
{i-=100; j += 100; }

© o0 N o o0 A W0 DD =

if (recv(Jtol))
{1 += 100; j -= 100; }

—_
o

i=200, j=800

—
—

if (i1 <0 |] j <0)
abort_tx();

else
commit_tx();
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Central server
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Central server
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Replication is the solution

sy
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Replicated state machine

1=100, j=900 1=100, j=900 1=100, j=900 1=100, j=900

1=200, j=800 1=200, j=800 1=200, j=800 1=200, j=800
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Replicated state machine

1=100, j=900 1=100, j=900 1=100, j=900 1=100, j=900

1=200, j=800 1=200, j=800 1=200, j=800 i=200, j=800

How to coordinate them?
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Two-phase commit

Transaction manager:

send <INIT, txid> to ALL

ncommits = 0

while ncommits < N {

on <ABORT> from i {
send <ABORT> to ALL;
break

}

on <COMMIT> from 1i
ncommits++

if ncommits ==
send <COMMIT> to ALL

© o0 N oo o0 A WD =

—_ a4
A WO N =+ O

Replica i of N:

on <INIT, txid> from mgr {

}

begin_tx(txid)

/+ processing... =/

if error()

send <ABORT> to mgr

else send <COMMIT> to mgr

receive m from mgr

if m == <ABORT>
abort_tx(txid)

else
commit_tx(txid)



Two-phase commit

© 0O N o o0 A WD =

10
11
12
13
14

Transaction manager:

send <INIT, txid> to ALL

ncommits = 0

while ncommits < N {

on <ABORT> from i {
send <ABORT> to ALL;
break

}

© 0O N O o A WD =

on <COMMIT> from 1i
ncommits++

—
o

11
if ncommits == 12
send <COMMIT> to ALL 13

(0

}

Replica / of N:

n <INIT, txid> from mgr {
begin_tx(txid)

/* processing... =/

if error()

send <ABORT> to mgr
else send <COMMIT> to mgr

receive m from mgr

if m == <ABORT>
abort_tx(txid)

else
commit_tx(txid)

if there are crashes? »



Distributed consensus




Idea of consensus

A distributed algorithm for N replicas
every replica proposes a value w € V

Termination
every correct replica eventually decides on avalue v € V

Agreement
if a replica decides on v, no replica decides on V' \ {v}

Validity
if a replica decides on v, the value v was proposed earlier
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How is consensus useful?

Jtol

= gm
X

£ g
|

ItoJ

Igor Konnov 19 of 39



How is consensus useful?

1. propose(Jtol)
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How is consensus useful?

1. propose(Jtol)

2.decide(JtoIl)

1. propose(Itold)
2.decide(JtoI) . decide(Jtol)
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Blockchain with classical consensus

Block 1 Block 2 Block 3 Block 4

Itol] Jtol Coffee Tea

In practice, multiple user transactions are packed together

Consensus decides on block hashes

lgor Konnov 20 of 39



Let’s write some algorithms



o ek
every replica eventually decides on a value v € V

Agreement
if a replica decides on v, no replica decides on V' \ {v}

Validity
if a replica decides on v, the value v was proposed earlier

lgor Konnov 22 of 39



Consensus without termination

The algorithm: do nothing!

1. propose(Jtol)

)

- w —
1. propose(Itold)
=1 ItoJ =
23 of 39
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Termination
every replica eventually decides on a value v € V

Agreement

if a replica decides on v, no replica decides on V' \ {v}

Validity
if a replica decides on v, the value v was proposed earlier

lgor Konnov 24 of 39



Consensus without agreement

The algorithm: decide on own value!

1. propose(AtoB) 1. propose(Jtol)
2. decide(AtoB) L @ty 2. decide(Jtol)

1. propose(Itold) .propose(AfoB

2.decide(Itod) B — . decide (AtoB)
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Termination
every replica eventually decides on a value v € V

Agreement
if a replica decides on v, no replica decides on V' \ {v}

Vetidid

if a replica decides on v, the value v was proposed earlier
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Consensus without validity

The algorithm: decide on a fixed value!

1. decide(bob)

1. decide(bob)
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Termination
every replica eventually decides on a value v € V

Agreement
if a replica decides on v, no replica decides on V' \ {v}

Validity
if a replica decides on v, the value v was proposed earlier

is there an algorithm?
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Synchronous distributed consensus



Synchronous rounds

a) send post on Monday, receive post on Thursday, and
compute on Friday

b) =&2FFZ.— delivers the post in 48 hours

lgor Konnov 30 of 39



Synchronous rounds

a) send post on Monday, receive post on Thursday, and

compute on Friday

b) =&2FFZ.— delivers the post in 48 hours

Round 1 Round 2
Replica 1: send/receive/compute send/receive/compute
Replica 2: send/receive/compute | send/receive/compute
Replica 3: send/receive/compute send/receive/compute

Replica 4: send/receive/compute

a) in every round, a replica executes send/receive/compute

send/receive/compute

b) every message sent in round K is received in round k

lgor Konnov
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Naive algorithm

rounds :

1

2 send {my_value;} to ALL

3 receive S; from ri: 1 <j<N
4 Vi = U1§j§N Sj

5 decide(min(V;))

lgor Konnov 31 of 39



Naive algorithm

i rounds:
2 send {my_value;} to ALL
3 receive S; from ri: 1 <j<N
4 Vi = U1§j§N Sj
5 decide(min(V;))
send(0)
|
my_value; = 10 my_value, = 0 my_values = 10
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Assumptions about faults

f replicas crash (unknown)

t < nis an upper bound on f (known)
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FloodMin [Chaudhuri, Herlihy, Lynch, Tuttle, JACM 2000]

Every replica ri for i € {1,..., N} executes the algorithm:

init:
best; := my_value;

round,: 1 < k<t+1
send best; to ALL
receive b from ri: 1 <j<N
best; := min {b1,...,b/\/}
if k =t + 1 then decide(best,;)

o N o o B~ WU N =
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FloodMin [Chaudhuri, Herlihy, Lynch, Tuttle, JACM 2000]

Every replica r; for i € {1,..., N} executes the algorithm:

i Init:

2 best; := my_value;

3

« roundg: 1< k<t+1

5 send best; to ALL

6 receive b; from ri: 1 <j<N

7 best; := min {b1,...,b/\/}

8 if k =1t + 1 then decide(best,;)
Termination
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FloodMin [Chaudhuri, Herlihy, Lynch, Tuttle, JACM 2000]

Every replica r; for i € {1,..., N} executes the algorithm:
i Init:
2 best; := my_value;
3
« roundg: 1< k<t+1
5 send best; to ALL
6 receive b; from ri: 1 <j<N
7 best,- := min {b1,...,b/\/}
8 if k =1t + 1 then decide(best,;)

Termination Validity

bestic |J {my_value;}
1<j<N
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FloodMin [Chaudhuri, Herlihy, Lynch, Tuttle, JACM 2000]

Every replica r; for i € {1,..., N} executes the algorithm:
i Init:
2 best; := my_value;
3
« roundg: 1< k<t+1
5 send best; to ALL
6 receive b; from ri: 1 <j<N
7 best,- := min {b1,...,b/\/}
8 if k =1t + 1 then decide(best,;)

Termination Validity Agreement

bestic |J {my_value;}
1<j<N
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Proving agreement (pencil & paper)

round,: 1 < k<t+1
send best; to ALL
receive b from ri: 1 <j<N
best; := min {b1,...,b/\/}
if k =t + 1 then decide(best,;)

o N o o &

Assume agreement is violated:
- Iwo replicas r; and r; call decide(v;) and decide(v;) in line 8
- assume v; < v,
- I; never received v; in line 6
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Proving agreement (pencil & paper)

round,: 1 < k<t+1
send best; to ALL
receive b; from ri: 1 <j<N
best; := min {b1,...,b/\/}
if k =t + 1 then decide(best,;)

o N oo o A

Assume agreement is violated:
- Iwo replicas r; and r; call decide(v;) and decide(v;) in line 8
- assume v; < v;
- I; never received v; in line 6
- by assumption, there are most t crashes
- hence, no crashes happen in some round m < t + 1
- each replica receives besty, . .., besty in round m (lines 5-7)

- hence, if r; received v;, then r; received v; in round m
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fewer constraints?



Asynchronous systems

r1 sends/receives on Monday/Thursday, computes on Friday
r> sends/receives/computes once a month
r3 went for a two-month vacation

ry left job without notice

ry USES —a=&~s® _ r,uses = , r3uses @ Post

LA POSTE
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Consensus in asynchronous systems

Various processor speeds

Various message delays, unbounded but finite

Consensus is not solvable [Fischer, Lynch, Paterson, 1985]
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Consensus in asynchronous systems

Various processor speeds

Various message delays, unbounded but finite

Consensus is not solvable [Fischer, Lynch, Paterson, 1985]

Practical consensus algorithms:

- termination is the engineering problem, Paxos
- or restrict asynchrony, DLS88, Tendermint
- or prove almost-sure termination Ben-Or
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Beyond crashes

What if some replicas lie?

propose(0) propose(1l)
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Beyond crashes

What if some replicas lie?

propose(0) propose(1l)

This is Byzantine behavior [Lamport, Shostak, Pease, 1982]

More than two-thirds must be correct: n > 3t

e.g., fendermint @
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Conclusions for Part |

Distributed consensus provides fault tolerance

Interaction of multiple peers, fraction of them faulty

Various assumptions about computations

Are the fault-tolerant algorithms bug-free?



Model checking of distributed algorithms:
from classics towards Tendermint blockchain

part Il

Igor Konnov

VMCAI winter school, January 16-18, 2020

formal C\)

INTERCHAIN

FOUNDATION



Timeline
Q Introduction to fault-tolerant distributed algorithms
G Verifying synchronous threshold-guarded algorithms
Q Veritying asynchronous threshold-guarded algorithms

O Can we verify Tendermint consensus?



Verifying synchronous threshold-guarded

distributed algorithms

[Stoilkovska, K., Widder, Zuleger. TACAS 2019]




Formalizing pseudo-code with threshold automata

Recall FloodMin:

init:
best; := my_value;

roundg: 1 < k<t+1
send best; to ALL
receive b; from ri: 1 <j<N
besti := min {bq,...,bn}
if k=1t + 1 then decide(best;)
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Recall FloodMin:

init:
best; := my_value;

roundg: 1 < k<t+1
send best; to ALL
receive b; from ri: 1 <j<N
besti := min {bq,...,bn}
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Formalizing pseudo-code with threshold automata

Recall FloodMin:

init:
best; := my_value;
roundg: 1 < k<t+1

send best; to ALL
receive b; from ri: 1 <j<N

besti := min {bq,...,bn}
if k=t + 1 then decide(best;) {v0,c0} send 0
by = # {v1,Cc1} send 1

¢2 = #{V0} =0

Igor Konnov
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Semantics of synchronous threshold automata

ry - true r3: ¢2

I ¢1
VO Q< Vi

b1 is #{v0,C0} > 0
¢z is #{v0} =0

Counter system: (X,/, T)
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Semantics of synchronous threshold automata

b1 is #{v0,C0} > 0
¢z is #{v0} =0

Counter system: (X,/, T)
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An execution of the counter system

v0

A
cO

Igor Konnov

(

o) 01 02 03 Otid
O P ) ) o
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w’ M’O
O C
g ]
t+ 1
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An execution of the counter system

01 g2 03 Ot+1

g0
O
D 4 D 4 D 4 |
; I3 s I3 3 I3 S—» . —
O
(

v0

A

cO ‘ \
7 M
% O

(

A configuration is a tuple of counters kyg, Kvi, Kse, Kac

An execution is a sequence of configurations
(related by transitions)
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Can we verify safety?

e.g., agreement



Parameterized model checking

vn, t, f satistying the resilience condition (e.g., n > 1)

Pln, ) | PCn, ) [ ... I P(n, 1) || Faulty || ... || Faulty = ¢

n—f co f fgulty
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Parameterized reachability

Input:
- synchronous threshold automaton TA

- Boolean formula ¢ over counter equalities > , ., k[¢] >a-p+b

Problem:
- find an initial configuration o;,; and a final configuration oy,
- there is an exection from ojnj; t0 o

- formula ¢ holds in o,

lgor Konnov 9 of 20



Parameterized reachability for STA is undecidable

Reduction to non-halting of a two-counter machine

register
Processes processes
2
Zstore
gd
gstuck A

y

gm — gha/t 8
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Parameterized reachability for STA is undecidable

Reduction to non-halting of a two-counter machine

register
Processes processes
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Parameterized reachability for STA is undecidable

Reduction to non-halting of a two-counter machine

control flow inst; : inc A register

pProcesses processes
2 ? inst; : zerok(A)

{j

4
{f h f/) 0,

b Q %\\L

#{ghalt} >0
é iff 2CM halts
m — ghalt

Igor Konnov 10 of 20
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Semi-decision procedure



Long vs. short executions

v0

A
cO

x

t

(

o




Long vs. short executions

00 01

v0

A

cO
M
x

e
S

(

0 %

vo | @ 2. @

V1 ‘_ g

cO O
o e\
% £




Bounded executions for reachability

Is there a number d such that we can always
shorten executions to executions of length < d?
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Bounded executions for reachability
/1/ .
< A i A

Is there a number d such that we can always
shorten executions to executions of length < d?

Yes, for several textbook algorithms
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Diameters computed with SMT

: loca- resilience z3 cvcd
algorithm . . d
tions condition sec. sec.
rb 4 n >3 2 0.27 0.99
rb_hybrid 8 n>3b+4+2 2 1.16 37.6
rb_omit 8 n>2 2 0.43 2.47
fair_cons 11 n >t 2 0.97 10.9
floodmin, kK = 1 5 n >t 2 0.21 0.86
floodmin, kK =2 7 n >t 2 0.53 7.43
floodset 7/ n >t 2 0.36 3.01
kset_omit, k = 1 4 n > 1 0.08 0.09
kset_omit, k =2 6 n > 1 0.17 0.27
phase_king 34 n>3J3 4 12.9 50.5
phase_queen 24 n>4 3 1.78 17.7

, . Crash
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Computing the diameter d

Reach every configuration in a predefined number of steps?

Od+1

d is the diameter of the system

Igor Konnov 15 of 20



Safety of synchronous fault-tolerant algorithms

Input STA Use BMC
diameter

using SMT (Z3) SO

|~

b
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SMT encoding

d is the diameter bound iff $(d) holds true:

T1 Td+1
g0 . > Og+1
| / / |
. T \ Ty \
O-O 7 /4 O-d
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SMT encoding

d is the diameter bound iff $(d) holds true:

(Vn, [, f.Nog,...,04+1. 306,...,0&)

71 Td+1
o0 S s 041 =
/ H / T{ Té || / d /
(00 =0y) N 0 SRR »0y A\ 0= 0411

=0
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SMT encoding

d is the diameter bound iff $(d) holds true:

(Vn, [, f.Nog,...,04+1. 306,...,0&)

T1 Td+1

00 AR > O d+1 —
| / / |
o ;N . Td o, d ;_
(00 =0y) N 0 SRR »0y A\ 0= 0411

i=0

1. initialize d to 1
2. check if —=®(d) is unsatisfiable
3. if yes, output d and terminate

4. if no, increment d, jump to step 2

lgor Konnov 17 of 20



SMT encoding
d is the diameter bound iff (d) holds true:

parameterized

+
(Vn, t,f.VYoo,...,0441. 3oy, ..., U&) quantifier alternation

T1 Td+1

0o EERE > Od+1 —
/ ||/ 7-4 Té{ ||/ d /
(00 =0p) A oy SRR »0g ANV 07 = 0d4

=0

1. initialize d to 1

2. check if —=®(d) is unsatisfiable
3. if yes, output d and terminate W

4. if no, increment d, jump to step 2

Igor Konnov 17 of 20



Bounded model checking with SMT

algorithm I?ca- RC z3 cve

tions sec. sec.
rb 4 n>3 0.08 0.08
rb_hybrid 8 n>3b+42 0.09 0.15
rb_omit 8 n>2 0.09 0.14
fair_cons 11 n >t 0.27 0.47
floodmin, kK = 1 ) n >t 0.18 0.29
floodmin, kK =2 V4 n >t 0.22 0.52
floodset / n >t 0.21 0.49
kset_omit, k = 1 4 n > 0.04 0.03
kset_omit, Kk =2 6 n > 0.04 0.07
phase_king 34 n>3 1.41 5.12
phase_queen 24 n>4 0.36 1.92

lgor Konnov

. Crash

18 of 20



Actual bug in [BGP89a], corrected in [BGP89Db]

for k := 1 to t+1 begin

(* universal exchange "
Sefld(V); ” —r
for j :=0to 1 do
)

C[j] := the number of recei
(* universal excha
for j :=0to 1 do begi
send(C[j1>n—t);
Dj] := the number of received 1’s;

end;
V =DJ[1]>¢; '
f []>(* Cing's broadoast * 1. Our tdechnlque
if £t =p th d(V);,
it b Shen sdlV) réported a
V' := the received message; Counterexample

end;

Fig. 2. The Phase King protocol: code for processor i.

)al exchanges are needed to achieve this.
2: Phase King solves the Distributed Consensus problem

ounds and two-bit messages (or 4(¢r+1) rounds and single-t

>3t.
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Actual bug in [BGP89a], corrected in [BGP89Db]

V i=v;; (* i’s initial value *)
for m :=1 to 1+1 begin

(* Exchange 1 *)
T Ck)=n—t

for k := 0 to 1 do begin
C (k) := the number-of Teceived & ’s;
if C(k)2n—t thenV =k
end;
(* Exchange 2 *)
send(V );
for k :=2 downto 0 do begin
D (k) := the number of received k& ’s:
ifDk)>1t thenV =k

end;
(* Exchange 3 *)
if m =i then
send(V );

ifV=2o0orD({V)<n-t then
V = MIN (1,received message);
end;

Fig. 4. The Phase King protocol: code for processor i.

lgor Konnov
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Conclusions for Part Il

Synchronous threshold automata to model the algorithms
Bounded model checking of counter systems
Completeness due to the diameter bounds

Diameters are not always bounded undecidability



Model checking of distributed algorithms:
from classics towards Tendermint blockchain

part Il

Igor Konnov

VMCAI winter school, January 16-18, 2020

formal C\)

INTERCHAIN

FOUNDATION



Timeline
Q Introduction to fault-tolerant distributed algorithms
G Verifying synchronous threshold-guarded algorithms
Q Veritying asynchronous threshold-guarded algorithms

O Can we verify Tendermint consensus?



Verifying asynchronous threshold-guarded

distributed algorithms

[K., Veith, Widder. CAV’15]

K., Lazi¢, Veith, Widder. POPL17]
K., Lazi¢, Veith, Widder. FMSD’17]
K., Widder. ISoLA’18]




Asynchronous systems

r1 sends/receives on Monday/Thursday, computes on Friday
r> sends/receives/computes once a month
r3 went for a two-month vacation

ry left job without notice

ry USES —a=&~s® _ r,uses = , r3uses @ Post

LA POSTE
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Fault-tolerant distributed algorithms

n processes send messages asynchronously
f processes are faulty (unknown)
t is an upper bound on f (known)

resilience condition on n, t, and f, eg.,.n>3tANt>Ff>0
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Faults and communication

Byzantine behavior: [Lamport, Shostak, Pease, 1982]

propose(0) propose(1l)
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Faults and communication

Byzantine behavior: [Lamport, Shostak, Pease, 1982]

propose(0) propose(1l)

More than two-thirds must be correct: n > 3t (resilience)

Communication is reliable:
If a correct process sends a message m,

m is eventually delivered to all correct processes

[Fischer, Lynch, Paterson, 1985]
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Byzantine model checker

forsyte.at/software/bymc|

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

ABA FRB CBC, C1CS CF1S
STRB NBAC NBACG BOSCO
JACM’'85 JACM'96 DSN’01 DSN’06

DC'87 HASE'97 DC’02 DISC’08




An example



One-step Byzantine asynchronous consensus

every process starts with a value v; € {0, 1}
agreement: no two processes decide differently

validity: if a correct process decides on v,
then v was the initial value of at least one process

unanimity: if all correct processes are initialized with v,
every deciding correct process must decide on v

termination: all correct processes eventually decide



One-step Byzantine asynchronous consensus

every process starts with a value v; € {0, 1}
agreement: no two processes decide differently

validity: if a correct process decides on v,
then v was the initial value of at least one process

unanimity: if all correct processes are initialized with v,
every deciding correct process must decide on v

termination: all correct processes eventually decide

decide in one communication step,

when there are “not too many faults”™




BOSCO [Song & van Renesse, DISC 2008]

i 1nput v

> send (VOTE,Vv,) to all processors;

3

+ wait until n—t VOTE messages have been received,;

5

s If more than Q%ﬂ VOTE messages contain the same value Vv
7 then DECIDE(v);

8

o If more than ﬂgl VOTE messages contain the same value Vv,

and there is only one such value v
then v, < v;

O G
w N = O

call Underlying-Consensus(Vp);

resilience: of n > 3t processes, f < t processes are Byzantine

fast termination: whenn>5tandf=0and n > 7t



Formalizing pseudo-code



Many ways to formalize distributed algorithms

for instance, TLA*
General languages

model checking is hard

relatively easy to understand

Parametric Promela
supported by ByMC via abstraction

special input for ByMC

Threshold automata . , _
efficient model checking with SM'T

lgor Konnov
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(Asynchronous) threshold automata

® TRUE — Sg++ da NSt < Tpo NSt < Tp1 ASo+ > Tyo NSt + > Tus
vO lUO
SEO t) >
DO qu/\S1<7’Do/\S1<TD1/\So<Tuo/\S1<TU1 I

¢
(/5A/\SO+fZTDO oA N\ S1 < Tpo N\ St <M1 ANSog+TF > 71uoAS1 < TUd

( similar for v1,sE1,D1,U1,...)

threshold guards, e.g., ¢4 isdefinedassg+sy+f>n—t
iIncrements of shared variables, e.g., sg++

run n — f copies provided that there are f < t Byzantine faults
and n > 3t

lgor Konnov 13 of 34



Veritying the asynchronous algorithms



Verifying these algorithms?

Parameterized verification problem:

vn, f. n— fcopies of

Our approach:

(I) Counting processes,
Il) Acceleration,

(
|
(IV) Schemas

lgor Konnov
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(Il1) Bounded model checking, and
)
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(I) Counting processes

Threshold guards (e.g., so + s1 + f > n — t) do not use process ids

A transition by a single process:

{/4:\,1 — 4 A Kgent = 1 /\8021}

Ky1-- ; KSENT++, So++,

{/4:\,1 :3/\IiSENT:2/\30:2}

lgor Konnov

Ry 1--
RSENT++
So++
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() Acceleration

The same transition by unboundedly many processes in one step:

fy1—=4

KsenT+=4
So+=4

S W e -

KSENT++ KRSENT++
So++ So++

Acceleration factor can be any natural number é

lgor Konnov 17 of 34



(lll) Bounded model checking with SMT

A transition by ¢§; processes (in linear integer arithmetic):

e =k =6 A 0i O
_ 1
T(0i,0i41,01) = %?ENT = Kgenr 1 07 A

() Tj+1

Execution: Oo—0O—0 --- O—>§)
K

oty 01 02 Ok—1

SMT formula: T(co0,01,00) A T(o1,02,01) N+ A T(0k—1,0k,0k—1) N Spec

how long should the executions be?

lgor Konnov
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Completeness of bounded model checking

What we can do:

ff

Complete and efficient BMC for:

- reachability
- safety and liveness

lgor Konnov

What we want to do:

/
\

—

S

/
\

[K., Veith, Widder: CAV’15]
K., Lazi¢, Veith, Widder: POPL17]

19 of 34



(Asynchronous) threshold automata

® TRUE — Sg++ da NSt < Tpo NSt < Tp1 ASo+ > Tyo NSt + > Tus
vO lUO
SEO t) >
DO qu/\S1<7’Do/\S1<TD1/\So<Tuo/\S1<TU1 I

¢
(/5A/\SO+fZTDO oA N\ S1 < Tpo N\ St <M1 ANSog+TF > 71uoAS1 < TUd

( similar for v1,sE1,D1,U1,...)

threshold guards, e.g., ¢4 isdefinedassg+sy+f>n—t
iIncrements of shared variables, e.g., sg++

run n — f copies provided that there are f < t Byzantine faults
and n > 3t
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Mover analysis

Exploring all bounded executions is inefficient

The argument contains:
- reordering: So++; Sq1++; Sp++ becomes So++; Sg++; Sq++
- acceleration Sp++; So++; S1++ becomes So+=2; S1++

lgor Konnov 21 of 34



(IV) Schemas — encoding representatives

Schema: {pre,} actions; {post;} ... {pre,} actions, {post. }

Example:
{} (VO — SE0)* {sg+f> o}
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(IV) Schemas — encoding representatives

Schema: {pre,} actions; {post;} ... {pre,} actions, {post. }

Example:
{} (VO — SE0)°" {sg+f>mo} (VI —=SE1)%2 { .. . sy+ >}
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(IV) Schemas — encoding representatives

Schema: {pre,} actions; {post;} ... {pre,} actions, {post. }

Example:
{} (VO — SE0)°" {sg+f>mo} (VI —=SE1)%2 { .. . sy+ >}
(VO — SEO0)%, (V1 — SE1)* {...,¢a}
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(IV) Schemas — encoding representatives

Schema: {pre,} actions; {post;} ... {pre,} actions, {post. }

Example:
{} (Vo — SEO)51 {so+f>mo} (VI — SE1)52 {....,81+F>m1}
(VO — SE0)%, (V1 — SE1)* {...,¢a} (SEO0 — DO0)%, (SE1 — D1)%

{rbo # 0 A Kkpy # 0}
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(IV) Schemas — encoding representatives

Schema: {pre,} actions; {post;} ... {pre,} actions, {post. }

Example:
{} (Vo — SEO)51 {so+f>mo} (VI — SE1)52 {....81+F>m1}
(VO — SE0)%, (V1 — SE1)* {...,¢a} (SEO0 — DO0)%, (SE1 — D1)%

{rbo # 0 A Kkpy # 0}

SMT solver tries to find: parameters n, t, f,
acceleration factors 6(1),...,4(6),
counters Kpg, Kpy, - - -

(a) the schema does not violate the property (UNSAT), or
(b) there is a counterexample (SAT)

lgor Konnov 22 of 34



From reachability to safety & liveness

A) A temporal logic for bad executions

B) Enumerating shapes of counterexamples

C) Property specific mover analysis

Details in [K., LaziC, Veith, Widder. POPL17]

lgor Konnov
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Overview of the verification algorithm

hreshold automaton —— schemas {Sy,..., Sk}

lgor Konnov 24 of 34



Overview of the verification algorithm

Threshold automaton — schemas {Sq, ..., Sk}

73S, .

counterexample

/3 = Sk

unsat?

lgor Konnov 24 of 34



Overview of the verification algorithm

Threshold automaton — schemas {Sq, ..., Sk}

73S, .

counterexample

/3 = Sk
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unsat?
Vienna Scientific Cluster
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Short counterexamples for safety or liveness

REACHABILITY _

REACHABILITY

Safety & liveness (POPL17)

Every lasso can be transformed into a bounded one. The bound depends on
the process code and the specification, not the parameters.

lgor Konnov 25 of 34



Experiments



Byzantine model checker

forsyte.at/software/bymc]

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

lgor Konnov

ABA FRB CBC, C1CS CF1S
STRB NBAC NBACG BOSCO
JACM’'85 JACM'96 DSN’01 DSN’06
DC’87 HASE'97 DC’02 DISC’08
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More threshold guards...

Reliable broadcast _ [Srikanth, Toueg'86]

Hybrid broadcast [Widder, Schmid’07]

Byzantine agreement X > ( 1+ 1 [Bracha, Toueg’85]
Non-blockin
. g. X>nNn [Raynal’97], [Guerraoui’'01]

atomic commitment
Condition-based X>n—t [Mostéfaoui, Mourgaya,
consensus x> [3]+1 Parvedy, Raynal’03]
Consensus in one X>n—t [Brasileiro, Greve,
communication step X >n-—2t Mostéfaoui, Raynal'03]
Byzantine one-ste

Y P X > (”+23"} + 1 [Song, van Renesse’08]
CoNnsensus

In general, there is a resilience condition, e.g., n > 3t, n > 7t

lgor Konnov 28 of 34



Benchmarks

Each benchmark has two versions:

1. Threshold automaton hand-written

2. Promela code automatic abstraction

Condition-based consensus Consensus in one comm. step
One-step consensus BOSCO

Non-blocking atomic commitment (2 versions)

Reliable broadcast Folklore broadcast

Asynchronous Byzantine agreement

lgor Konnov 29 of 34



Time to check the algorithms

3 Promela abstractions < Threshold automata

®
S
S
S
®
S
\@QQQ“O"O%O
® & F F PP S
R I A
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Sequential vs. parallel (256 MPI cores)

Time to verify (sec., log2 scale)

1+ Sequential O MPI

23 4506 7 8910111213141516
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Speedup

sometimes, the number of schemas is smaller than the number of cores (256)

400

300

200

100

1 2 3 4 &5 6 7 8 9 10 11 12 13 14 15 16
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Promela vs. threshold automata: input

Number of automata locations

BOSCO
C1CS
CF1S

CBC

NBACR
NBACG
STRB
FRB

..rﬂ[[“

0 50 100 150 200

B Hand-written threshold automata B Promela abstractions
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Promela vs. threshold automata: input

Number of automata locations

B%SE Number of automata rules
AB CF1S I
NBAC  ABA |
STR NBACR |——
FR NBACG
STRB
FRB |
0 500 1000 1500 2000 2500
@ Hand-written threshold automata M Promela abstractions

Igor Konnov 33 of 34



Conclusions for Part Il

Threshold automata to model asynchronous algorithms
Bounded model checking of counter systems
Completeness due to the bounds

... for safety and liveness



Extending threshold automata

standard TA

piecewise monotone (PMTA)

2
3:n>x , Xt+
/1 lo

reversible (RTA)

1> x, xt+

iIncrements in loops (NCTA)

bounded difference (BDTA)

1>x—y, xt+

O =0

61 1§X_y1y++ 62

reversal bounded (RBTA)

Like reversible automata, but increments
and decrements of variables may
alternate a bounded number of times.



All flavors of threshold automata [CONCUR’18]

Bounded Decidable

Level Reversals Canonical diameter Flattable reachability Fragment
X 0 v v TA
p.m. f(x) 0 v PMTA
X <k v RBTA
X 0 X X NCTA
X—y 0 v/ X X X BDTA
X o0 v X X X RTA

%

Jure Kukovec |.K. Josef Widder
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Randomized consensus algorithm Ben-Or

bool v := input_value({0, 1});
int r := 1;
while (true) do
send (R,r,v) to all;
. wait for n - t messages (R,r,x*);

[Ben-Or, PODC 1983]
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Randomized consensus algorithm Ben-Or

bool v := input_value({0, 1});
int r := 1;

while (true) do

send (R,r,v) to all;

wait for n - t messages (R,r,x*);

if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;

else send (P,r,?) to all;

wait for n - t messages (P,r,x);

[Ben-Or, PODC 1983]
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Randomized consensus algorithm Ben-Or
bool v := input_value({0, 1});

int r := 1;
while (true) do
send (R,r,v) to all;

wait for n - t messages (R,r,x*);

if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;

else send (P,r,?) to all;

wait for n - t messages (P,r,x);

if received at least t + 1
messages (P,r,w,D) then {

V oi= W,
iIf received at least
messages (P,r,w,D)
then decide w;

/* enough support —> update estimate +/
(n + t) / 2

/* Strong majority —> decide +/

[Ben-Or, PODC 1983]



Randomized consensus algorithm Ben-Or

bool v := input_value({0, 1});
int r := 1;
while (true) do
send (R,r,v) to all;
. wait for n - t messages (R,r,x*);

if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;

 else send (P,r,?) to all;

» wait for n - t messages (P,r,x);

iIf received at least t + 1
messages (P,r,w,D) then {
| Vo i= w; /* enough support —> update estimate +/
| iIf received at least (n + t) / 2
; messages (P,r,w,D)

then decide w; /* Strong majority —> decide +/
} else v := random({0,1}); /+ unclear —> coin toss */

) r:=r + 1;

od

[Ben-Or, PODC 1983]



Probabilistic threshold-guarded algorithms [CONCUR’19]

No consensus algorithm for asynchronous systems (FLP’85)
Coin toss to break ties: value := random({0,1})

Ben-Or’s, Bracha’s consensus, RS-Bosco, k-set agreement

Compositional reasoning and reduction for multiple rounds

ByMC to reason about a single round

Nathalie Bertrand |.K. Marijana Lazi¢  Josef Widder
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Model checking of distributed algorithms:
from classics towards Tendermint blockchain

part IV
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Timeline
Q Introduction to fault-tolerant distributed algorithms
G Verifying synchronous threshold-guarded algorithms
Q Veritying asynchronous threshold-guarded algorithms

O Can we verify Tendermint consensus?



Tendermint consensus

New Height

Propose - - o)
= Valid block
Invalid block or not
received in time
Prevote Nil Grevote Block

+2/3
precommit for

no +2/3
\precommit for

no +2/3 prevote
Precommit Nil e f?r_b_IOCK

+2/3 prevote

Precommit Block




Algorithm 1 Tendermint consensus algorithm

1
2
3:
4:
5
6
7
8

©

: Initialization:

hp =0
round, := 0
stepp € {propose, prevote, precommit}

decision, || := nil
lockedV aluey, :
locked Round,, := —1
validV alue, := nil
validRound, := —1

: upon start do Start Round(0)

: Function StartRound(round) :

round, < round
stepp < propose
if proposer(h,,, round,) = p then
if validV alue, # nil then
proposal < validV aluey,
else
proposal < getV alue()
broadcast (PROPOSAL, h,, roundy, proposal, validRound,)
else

/* current height, or consensus instance we are currently executing */
/* current round number */

schedule OnTimeout Propose(hy, round,) to be executed after timeout Propose(roundy)

if valid(v) A (lockedRound, = —1 V lockedV alue, = v) then
broadcast (PREVOTE, h,,, round,, id(v))

else
broadcast (PREVOTE, h,,, round,, nil)

stepp < prevote

stepp = propose A (vr > 0 A vr < roundy) do
if valid(v) A (lockedRound, < vr V lockedV alue, = v) then
broadcast (PREVOTE, h,,, round,, id(v))
else
broadcast (PREVOTE, h,,, round,, nil)
stepp < prevote

: upon (PROPOSAL, h,,, roundy, v, —1) from proposer(h,, round,) while step, = propose do

: upon (PROPOSAL, hy,, roundy, v, vr) from proposer(hy, round,) AND 2f 4+ 1 (PREVOTE, hy,, vr, id(v)) while

: upon 2f + 1 (PREVOTE, h,, roundy, *) while step, = prevote for the first time do

schedule OnTimeout Prevote(hy, roundy) to be executed after timeout Prevote(roundy)

valid(v) A step, > prevote for the first time do

if step, = prevote then
lockedV aluep <+ v
locked Round,, < round,
broadcast (PRECOMMIT, h,,, round,, id(v)))
stepp < precommit

validValue, < v

validRound, <+ round,

: upon 2f + 1 (PREVOTE, h,, roundp, nil) while step, = prevote do

broadcast (PRECOMMIT, h;,, roundy, nil)
stepp < precommit

: upon 2f + 1 (PRECOMMIT, hy,, round,,, ) for the first time do

: upon (PROPOSAL, h,,, roundy, v, *) from proposer(hp, round,) AND 2f + 1 (PREVOTE, h,,, round,, id(v)) while

schedule OnTimeout Precommit(h,, roundy) to be executed after timeoutPrecommit(round,)

if valid(v) then
decisionp[hp] = v
hp < hp +1

: upon (PROPOSAL, hy,, 7, v, *) from proposer(hp,r) AND 2f + 1 (PRECOMMIT, hy,, 7, id(v)) while decisiony[hp] = nil do

reset locked Round,,, lockedV alue,, valid Round, and validV alue,, to initial values and empty message log

StartRound(0)

:upon f + 1 (*, hy, round, *, x) with round > round, do

StartRound(round)

: Function OnTimeout Propose(height, round) :

if height = hp, A round = round, A step, = propose then



Challenges for ByMC

Unbounded height of the blockchain

Unbounded number of rounds within one height

Rotating coordinator, breaking symmetry

Partial synchrony to guarantee liveness

Correct processes have more than 2/3 of voting power

lgor Konnov 50f12



Can we help?

| read that paper about Byzantine Model Checker
= .
——%  Model the algorithm as a threshold automaton

Verity safety and liveness foralln,t,f: n>3tAt>f>0

| have heard this talk by Leslie Lamport
Let’s write it in TLA™

Run the TLC model checker for fixed parameters

e
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Can we help?

| read that paper about Byzantine Model Checker

Model the algorithm as a threshold automaton

Verity safety and liveness foralln,t,f: n>3tAt>f>0

| have heard this talk by Leslie Lamport
Let’s write it in TLA™

Run the TLC model checker for fixed parameters

TLC takes forever...

Run APALACHE for fixed parameters

lgor Konnov
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Symbolic model checker for TLA™

TLAT

Y

Reduction
rules

[OOPSLA’19]

Y

SMT
(£3)

Focus on distributed algorithms

@ Invariants
@ Inductive invariants

© Fixed parameters, bounded executions
@ Fixed parameters

[forsyte.at/research/apalache/]

lgor Konnov
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What we were doing in the last months...

Specifying several Tendermint protocols in TLA™:
- fast synchronization
- light client

- consensus, tuned for fork detection

[github.com/interchainio/verification]

lgor Konnov 8 of 12



Medium DALY DIGEST

Stories for Igor Konnov

Today’s highlights

Functional Programming features in Scala
I've been exploring functional programming with Scala and its eco system for the past few
months.

Kevin Lawrence in Towards Data Science * 6 min read

J :13;3 | How to understand your program’s memory

: —r— When coding in a language like C or C++ you can interact with your

| | = | . .
Push Pop Push Memoryinamore low-level way. Sometimes...

Tiago Antunes in freeCodeCamp.org 6 min read

Ethereum Classic (ETC) is currently being 51%
attacked

On 1/5/2019, Coinbase detected a deep reorg of the Ethereum Classic
blockchain that included a double spend...

Mark Nesbitt in The Coinbase Blog 7 min read




Fork accountability

Detect the peers that caused a fork — violation of agreement

Ran Apalache: 4 peers, 2 faults, fault threshold is 1:
¢ found equivocation, 2 hours
@ found amnesia, 2 hours

% no other scenarios up to 15 steps, 7 CPU cores, 6.5 hours
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Fork accountability

Detect the peers that caused a fork — violation of agreement

Ran Apalache: 4 peers, 2 faults, fault threshold is 1:
¢ found equivocation, 2 hours
@ found amnesia, 2 hours

% no other scenarios up to 15 steps, 7 CPU cores, 6.5 hours

Proving that no other scenarios exist? ... for all parameters?

lgor Konnov 10 of 12



Conclusions

Reasoning about fault-tolerant algorithms is hard
... but fun!

Practical algorithms are even harder

Threshold guards are everywhere

Specialized tools for narrow classes, e.g., ByMC
VS.
General tools for broader classes, e.g., Apalache



Future

Supporting as many features as in TLC
TLA™ users specify industrial-scale distributed protocols

all kinds of Paxos, Raft, key-value stores, group membership

These are large and complex specifications [Newcombe et al.14]

Amazon used 80 CPU cores to find a trace of 35 steps

Semi-automated techniques that would get help from the user

Reduction arguments, abstractions, etc.



