Model checking of distributed algorithms:

from classics towards Tendermint blockchain

Igor Konnov

VMCAI winter school, January 16-18, 2020

Swiss non-profit foundation

Supports R&D of applications that are:

- secure and scalable
- decentralized

Main focus:

- the Cosmos Network
- Tendermint consensus

Cosmos

A decentralized network of independent blockchains

Blockchains are powered by BFT consensus like Tendermint

They communicate over Inter-Blockchain Communication protocol

[cosmos.network/ecosystem]

Tendermint

Byzantine fault-tolerant State Machine Replication middleware

Consensus protocol adapts DLS & PBFT for blockchains:

- wide area network
- hundreds of validators and thousands of nodes
- communication via gossip

efficient and open source

Theory: [arxiv.org/abs/1807.04938]

[informal.systems]

Verification-Driven Development of Tendermint:

- 1. PODC-style specifications in English
- 2. TLA⁺ specifications (make English formal / fix it)
 - model checking for finding bugs in TLA⁺ specs
- 3. Implementation in Rust
 - model-based testing of the implementation using TLA⁺ specs
- 4. Automated verification of TLA⁺ specs

Timeline

Verifying synchronous threshold-guarded algorithms

Verifying asynchronous threshold-guarded algorithms

Can we verify **Tendermint consensus?**

Please send me some money

I will transfer you 100 atoms

Iunie.io

Iunie.io

Send 100 ATOMs to cosmos1wze...

Iunie.io

Iunie.io

Send 100 ATOMs to cosmos1wze...

CØSMOS

Iunie.io

Iunie.io

CØSMOS

Iunie.io

Iunie.io

Features of the system

Distributed

logically and geographically

Fault-tolerant

individual machines may crash and even act malicious

Safe and live

e.g., no double spending

every transaction is eventually committed

How to build such a system?

sequential code:

```
int i = 0, j = 1000;
   while (true) {
     begin_tx();
5
     if (recv(ItoJ))
       \{ i -= 100; j += 100; \}
8
     if (recv(JtoI))
       \{ i += 100; j -= 100; \}
10
11
     if (i < 0 | | j < 0)
12
       abort_tx();
13
14 else
       commit_tx();
15
16
```

sequential code:

```
int i = 0, j = 1000;
   while (true) {
     begin_tx();
4
5
     if (recv(ItoJ))
        \{ i -= 100; j += 100; \}
8
     if (recv(JtoI))
        \{ i += 100; j -= 100; \}
10
11
     if (i < 0 | | j < 0)
12
        abort_tx();
13
     else
14
        commit_tx();
15
   }
16
```

state machine:

Central server

Central server

Replication is the solution

How to coordinate them?

Two-phase commit

Transaction manager:

send <INIT, txid> to ALL on <INIT, txid> from mgr { ncommits = 0begin_tx(txid) while ncommits < N {</pre> 3 /* processing... */ on <ABORT> from i { 4 **if** error() send <ABORT> to ALL; 5 send <ABORT> to mgr break else send <COMMIT> to mgr 7 receive m from mgr 8 on <COMMIT> from i ncommits++ **if** $m == \langle ABORT \rangle$ 10 10 $abort_tx(txid)$ 11 if ncommits == N 12 else send <COMMIT> to ALL commit_tx(txid) 13 13 14 14

Replica *i* of *N*:

if there are crashes?

Two-phase commit

Transaction manager:

send <INIT, txid> to ALL on <INIT, txid> from mgr { ncommits = 0begin_tx(txid) while ncommits < N {</pre> 3 /* processing... */ on <ABORT> from i { 4 **if** error() send <ABORT> to ALL; 5 send <ABORT> to mgr break else send <COMMIT> to mgr 7 receive m from mgr 8 on <COMMIT> from i ncommits++ **if** $m == \langle ABORT \rangle$ 10 10 $abort_tx(txid)$ 11 **if** ncommits == N 12 else send <COMMIT> to ALL 13 commit_tx(txid) 13 14 14

if there are crashes?

Replica *i* of *N*:

Distributed consensus

Idea of consensus

A distributed algorithm for N replicas every replica proposes a value $w \in V$

Termination

every correct replica eventually decides on a value $v \in V$

Agreement

if a replica decides on v, no replica decides on $V \setminus \{v\}$

Validity

if a replica decides on v, the value v was proposed earlier

How is consensus useful?

How is consensus useful?

How is consensus useful?

Blockchain with classical consensus

Block 1	Block 2	Block 3	Block 4	
ItoJ	JtoI	Coffee	Tea	

In practice, multiple user transactions are packed together

Consensus decides on block hashes

Igor Konnov 20 of 39

Let's write some algorithms

Termination

every replica eventually decides on a value $v \in V$

Agreement

if a replica decides on V, no replica decides on $V \setminus \{v\}$

Validity

if a replica decides on v, the value v was proposed earlier

Igor Konnov 22 of 39

Consensus without termination

The algorithm: do nothing!

Igor Konnov 23 of 39

Termination

every replica eventually decides on a value $v \in V$

Agreement

if a replica decides on V, no replica decides on $V \setminus \{v\}$

Validity

if a replica decides on v, the value v was proposed earlier

Igor Konnov 24 of 39

Consensus without agreement

The algorithm: decide on own value!

Termination

every replica eventually decides on a value $v \in V$

Agreement

if a replica decides on V, no replica decides on $V \setminus \{v\}$

Validity

if a replica decides on v, the value v was proposed earlier

Igor Konnov 26 of 39

Consensus without validity

The algorithm: decide on a fixed value!

Igor Konnov 27 of 39

Termination

every replica eventually decides on a value $v \in V$

Agreement

if a replica decides on V, no replica decides on $V \setminus \{v\}$

Validity

if a replica decides on v, the value v was proposed earlier

is there an algorithm?

Igor Konnov 28 of 39

Synchronous distributed consensus

Synchronous rounds

- a) send post on Monday, receive post on Thursday, and compute on Friday
- b) delivers the post in 48 hours

	Round 1	Round 2	
Replica 1:	send/receive/compute	send/receive/compute	
Replica 2:	send/receive/compute	send/receive/compute	
Replica 3:	send/receive/compute	send/receive/compute	
Replica 4:	send/receive/compute	send/receive/compute	

- a) in every round, a replica executes send/receive/compute
- b) every message sent in round k is received in round k

Igor Konnov 30 of 39

Synchronous rounds

- a) send post on Monday, receive post on Thursday, and compute on Friday
- b) delivers the post in 48 hours

	Round 1	Round 2	
Replica 1:	send/receive/compute	send/receive/compute	
Replica 2:	send/receive/compute	send/receive/compute	
Replica 3:	send/receive/compute	send/receive/compute	
Replica 4:	send/receive/compute	send/receive/compute	

- a) in every round, a replica executes send/receive/compute
- b) every message sent in round *k* is received in round *k*

Igor Konnov 30 of 39

Naïve algorithm

```
round<sub>1</sub>:

send \{my\_value_i\} to ALL

receive S_j from r_j: 1 \le j \le N

V_i := \bigcup_{1 \le j \le N} S_j

decide(min(V_i))
```

Igor Konnov 31 of 39

Naïve algorithm

```
round<sub>1</sub>:

send \{my\_value_i\} to ALL

receive S_j from r_j: 1 \le j \le N

V_i := \bigcup_{1 \le j \le N} S_j

decide(min(V_i))
```


Igor Konnov 31 of 39

Assumptions about faults

f replicas crash (unknown)

t < n is an upper bound on f (known)

Igor Konnov 32 of 39

FloodMin

[Chaudhuri, Herlihy, Lynch, Tuttle, JACM 2000]

Every replica r_i for $i \in \{1, ..., N\}$ executes the algorithm:

```
init:

best_i := my\_value_i

round<sub>k</sub>: 1 \le k \le t + 1

send best_i to ALL

receive b_j from r_j: 1 \le j \le N

best<sub>i</sub> := min \{b_1, \dots, b_N\}

if k = t + 1 then decide(best_i)
```

Igor Konnov 33 of 39

FloodMin

[Chaudhuri, Herlihy, Lynch, Tuttle, JACM 2000]

Every replica r_i for $i \in \{1, ..., N\}$ executes the algorithm:

```
init:

best_i := my\_value_i

round<sub>k</sub>: 1 \le k \le t + 1

send best_i to ALL

receive b_j from r_j: 1 \le j \le N

best<sub>i</sub> := min \{b_1, \dots, b_N\}

if k = t + 1 then decide(best_i)
```

Termination

Every replica r_i for $i \in \{1, ..., N\}$ executes the algorithm:

```
init:

best_i := my\_value_i

round<sub>k</sub>: 1 \le k \le t + 1

send best_i to ALL

receive b_j from r_j: 1 \le j \le N

best<sub>i</sub> := min \{b_1, \dots, b_N\}

if k = t + 1 then decide(best_i)
```

Termination Validity

$$best_i \in \bigcup_{1 \le j \le N} \{my_value_j\}$$

Every replica r_i for $i \in \{1, ..., N\}$ executes the algorithm:

```
1 init:
 best_i := my\_value_i
  round_k: 1 \le k \le t+1
    send best; to ALL
    receive b_i from r_j: 1 \le j \le N
if k = t + 1 then decide(best_i)
```

Termination

Validity

Agreement 6

$$best_i \in \bigcup_{1 \le j \le N} \{my_value_j\}$$

Proving agreement (pencil & paper)

```
round<sub>k</sub>: 1 \le k \le t + 1

send best<sub>i</sub> to ALL

receive b_j from r_j: 1 \le j \le N

best<sub>i</sub> := min \{b_1, \dots, b_N\}

if k = t + 1 then decide(best<sub>i</sub>)
```

Assume agreement is violated:

- Two replicas r_i and r_i call $decide(v_i)$ and $decide(v_i)$ in line 8
- assume $v_i < v_j$
- r_i never received v_i in line 6
- by assumption, there are most t crashes
- hence, no crashes happen in some round $m \le t + 1$
- each replica receives best₁,..., best_N in round m (lines 5–7)
- hence, if r_i received v_i , then r_i received v_i in round m

Igor Konnov 34 of 39

Proving agreement (pencil & paper)

```
4 round<sub>k</sub>: 1 \le k \le t + 1
5 send best<sub>i</sub> to ALL
6 receive b_j from r_j: 1 \le j \le N
7 best<sub>i</sub> := min \{b_1, \ldots, b_N\}
8 if k = t + 1 then decide(best<sub>i</sub>)
```

Assume agreement is violated:

- Two replicas r_i and r_i call $decide(v_i)$ and $decide(v_i)$ in line 8
- assume $v_i < v_j$
- r_i never received v_i in line 6
- by assumption, there are most t crashes
- hence, no crashes happen in some round $m \le t + 1$
- each replica receives best₁,..., best_N in round m (lines 5–7)
- hence, if r_i received v_i , then r_i received v_i in round $m \le r_i$

Igor Konnov 34 of 39

fewer constraints?

Asynchronous systems

 r_1 sends/receives on Monday/Thursday, computes on Friday

 r_2 sends/receives/computes once a month

 r_3 went for a two-month vacation

 r_4 left job without notice

$$r_1$$
 uses r_2 uses r_3 uses r_3 uses r_3 uses r_4 Post

Igor Konnov 36 of 39

Consensus in asynchronous systems

Various processor speeds

Various message delays, unbounded but finite

Consensus is not solvable [Fischer, Lynch, Paterson, 1985]

Practical consensus algorithms:

termination is the engineering problem,

Paxos

- or restrict asynchrony,

DLS88, Tendermint

or prove almost-sure termination

Ben-Or

Igor Konnov 37 of 39

Consensus in asynchronous systems

Various processor speeds

Various message delays, unbounded but finite

Consensus is not solvable [Fischer, Lynch, Paterson, 1985]

Practical consensus algorithms:

- termination is the engineering problem,

Paxos

- or restrict asynchrony,

DLS88, Tendermint

- or prove almost-sure termination

Ben-Or

Igor Konnov 37 of 39

Beyond crashes

What if some replicas lie?

This is **Byzantine** behavior

[Lamport, Shostak, Pease, 1982]

More than two-thirds must be correct: n > 3t

e.g., Tendermint

Igor Konnov 38 of 39

Beyond crashes

What if some replicas lie?

This is **Byzantine** behavior

[Lamport, Shostak, Pease, 1982]

More than two-thirds must be correct: n > 3t

Igor Konnov 38 of 39

Conclusions for Part I

Distributed consensus provides fault tolerance

Interaction of multiple peers, fraction of them faulty

Various assumptions about computations

Are the fault-tolerant algorithms bug-free?

Model checking of distributed algorithms:

from classics towards Tendermint blockchain

part II

Igor Konnov

VMCAI winter school, January 16-18, 2020

Timeline

Verifying synchronous threshold-guarded algorithms

Verifying asynchronous threshold-guarded algorithms

Can we verify **Tendermint consensus?**

Verifying **synchronous** threshold-guarded distributed algorithms

[Stoilkovska, K., Widder, Zuleger. TACAS 2019]

Formalizing pseudo-code with threshold automata

Recall FloodMin:

```
init:
best_i := my\_value_i

round_k : 1 \le k \le t + 1
send \ best_i \ to \ ALL
receive \ b_j \ from \ r_j : 1 \le j \le N
best_i := min \ \{b_1, \dots, b_N\}
if \ k = t + 1 \ then \ decide(best_i)
```


$$\phi_1 \equiv \#\{\text{VO}, \text{CO}\} > 0$$
 $\phi_2 \equiv \#\{\text{VO}\} = 0$

Formalizing pseudo-code with threshold automata

Recall FloodMin:

```
init:
best_i := my\_value_i

round_k : 1 \le k \le t + 1
send \ best_i \ to \ ALL
receive \ b_j \ from \ r_j : 1 \le j \le N
best_i := min \ \{b_1, \dots, b_N\}
if \ k = t + 1 \ then \ decide(best_i)
```


$$\phi_1 \equiv \#\{\text{V0}, \text{C0}\} > 0$$
 $\phi_2 \equiv \#\{\text{V0}\} = 0$

Formalizing pseudo-code with threshold automata

Recall FloodMin:

```
init:
best_i := my\_value_i

round_k : 1 \le k \le t + 1
send \ best_i \ to \ ALL
receive \ b_j \ from \ r_j : 1 \le j \le N
best_i := min \ \{b_1, \dots, b_N\}
if \ k = t + 1 \ then \ decide(best_i)
```


$$\begin{cases} \text{V0, c0} \} \text{ send 0} \\ \phi_1 \equiv \# \end{cases}$$

$$\begin{cases} \text{V1, c1} \} \text{ send 1} \\ \phi_2 \equiv \# \{ \text{V0} \} = 0 \end{cases}$$

Igor Konnov 4 of 20

$$\phi_1$$
 is $\#\{v0, c0\} > 0$
 ϕ_2 is $\#\{v0\} = 0$

$$\tau(r_1) + \cdots + \tau(r_9) = n$$

$$\phi_1 \text{ is } \# \{ v0, c0 \} > 0$$
 $\phi_2 \text{ is } \# \{ v0 \} = 0$

$$\tau(r_1) + \cdots + \tau(r_9) = n$$

$$\phi_1 \text{ is } \# \{ v0, c0 \} > 0$$

 $\phi_2 \text{ is } \# \{ v0 \} = 0$

$$\tau(r_1) + \cdots + \tau(r_9) = n$$

$$\phi_1 \text{ is } \# \{ v0, c0 \} > 0$$

 $\phi_2 \text{ is } \# \{ v0 \} = 0$

$$\tau(r_1)+\cdots+\tau(r_9)=n$$

An execution of the counter system

A configuration is a tuple of counters $\kappa_{
m V0},\,\kappa_{
m V1},\,\kappa_{
m SE},\,\kappa_{
m AC}$

An execution is a sequence of configurations

(related by transitions)

Igor Konnov 6 of 20

An execution of the counter system

A configuration is a tuple of counters κ_{V0} , κ_{V1} , κ_{SE} , κ_{AC}

An execution is a sequence of configurations

(related by transitions)

Igor Konnov 6 of 20

Can we verify safety?

e.g., agreement

Parameterized model checking

 $\forall n, t, f$ satisfying the resilience condition (e.g., n > t)

$$\underbrace{P(n,t) \parallel P(n,t) \parallel \ldots \parallel P(n,t)}_{ n-f \ \text{correct}} \parallel \underbrace{\text{Faulty} \parallel \ldots \parallel \text{Faulty}}_{f \ \text{faulty}} \models \varphi$$

Igor Konnov 8 of 20

Parameterized reachability

Input:

- synchronous threshold automaton TA
- Boolean formula ϕ over counter equalities $\sum_{\ell \in \mathcal{L}} \kappa[\ell] \geq \mathbf{a} \cdot \mathbf{p} + \mathbf{b}$

Problem:

- find an initial configuration σ_{init} and a final configuration σ_{fin}
- there is an exection from $\sigma_{\textit{init}}$ to $\sigma_{\textit{fin}}$
- formula ϕ holds in σ_{fin}

Igor Konnov 9 of 20

Parameterized reachability for STA is undecidable

Reduction to non-halting of a two-counter machine

Igor Konnov 10 of 20

Parameterized reachability for STA is undecidable

Reduction to non-halting of a two-counter machine

Igor Konnov 10 of 20

Parameterized reachability for STA is undecidable

Reduction to non-halting of a two-counter machine

Igor Konnov 10 of 20

Semi-decision procedure

Long vs. short executions

Long vs. short executions

Bounded executions for reachability

Is there a number d such that we can always shorten executions to executions of length $\leq d$?

Yes, for several textbook algorithms

Igor Konnov 13 of 20

Bounded executions for reachability

Is there a number d such that we can always shorten executions to executions of length $\leq d$?

Yes, for several textbook algorithms

Igor Konnov 13 of 20

Diameters computed with SMT

algorithm	loca- tions	resilience condition	d	z3 sec.	cvc4 sec.
rb	4	<i>n</i> > 3t	2	0.27	0.99
rb_hybrid	8	n > 3b + 2s	2	1.16	37.6
_rb_omit	8	n > 2t	2	0.43	2.47
fair_cons	11	n > t	2	0.97	10.9
floodmin, $k=1$	5	$n > \mathbf{t}$	2	0.21	0.86
floodmin, $k=2$	7	$n > \mathbf{t}$	2	0.53	7.43
floodset	7	$n > \mathbf{t}$	2	0.36	3.01
$kset_omit, k = 1$	4	n > t	1	0.08	0.09
$kset_omit, k=2$	6	n > t	1	0.17	0.27
phase_king	34	<i>n</i> > 3t	4	12.9	50.5
phase_queen	24	<i>n</i> > 4t	3	1.78	17.7

Byzantine, Send Omission, Crash

Igor Konnov 14 of 20

Computing the diameter *d*

Reach every configuration in a predefined number of steps?

d is the diameter of the system

Igor Konnov 15 of 20

Safety of synchronous fault-tolerant algorithms

Input STA

Compute diameter

Use BMC

using SMT (Z3)

Igor Konnov 16 of 20

d is the diameter bound iff $\Phi(d)$ holds true:

 $\forall n, t, f. \forall \sigma_0, \ldots, \sigma_{d+1}. \exists \sigma'_0, \ldots, \sigma'_d.$

parameterized + antifier alternation

$$\sigma_0 \xrightarrow{\tau_1} \cdots \xrightarrow{\tau_{d+1}} \sigma_{d+1} \Rightarrow \cdots \qquad \sigma_0 = \sigma_0') \land \sigma_0' \xrightarrow{\tau_1'} \cdots \xrightarrow{\tau_d'} \cdots \xrightarrow{\tau_d'} \sigma_d' \land \bigvee_{i=0}^{d} \sigma_i' = \sigma_{d+1}$$

- 1. initialize d to 1
- 2. check if $\neg \Phi(d)$ is unsatisfiable
- 3. if yes, output d and terminate
- 4. if no, increment d, jump to step 2

Igor Konnov 17 of 20

d is the diameter bound iff $\Phi(d)$ holds true:

$$\forall n, t, f. \ \forall \sigma_0, \ldots, \sigma_{d+1}. \ \exists \sigma'_0, \ldots, \sigma'_d.$$

$$\sigma_0 \xrightarrow{\tau_1} \cdots \xrightarrow{\tau_{d+1}} \sigma_{d+1} \Rightarrow \\ (\sigma_0 = \sigma'_0) \land \sigma'_0 \xrightarrow{\tau'_1} \cdots \xrightarrow{\tau'_d} \xrightarrow{\tau'_d} \sigma'_d \land \bigvee_{i=0}^d \sigma'_i = \sigma_{d+1}$$

- 1. initialize d to 1

- 4. if no, increment d, jump to step 2

Igor Konnov 17 of 20

d is the diameter bound iff $\Phi(d)$ holds true:

$$\forall n, t, f. \ \forall \sigma_0, \ldots, \sigma_{d+1}. \ \exists \sigma'_0, \ldots, \sigma'_d.$$

parameterized

quantifier alternatior

$$(\sigma_0 = \sigma'_0) \land \begin{array}{c} \sigma_0 \xrightarrow{\tau_1} & \cdots & \xrightarrow{\tau_{d+1}} \sigma_{d+1} \\ \vdots & \vdots & \vdots \\ (\sigma_0 = \sigma'_0) \land \begin{array}{c} \sigma'_0 & \xrightarrow{\tau'_1} \\ \end{array} & \cdots & \xrightarrow{\tau'_d} \begin{array}{c} \vdots \\ \sigma'_d \\ \end{array} \land \bigvee_{i=0}^d \sigma'_i = \sigma_{d+1} \end{array}$$

- 1. initialize d to 1
- 2. check if $\neg \Phi(d)$ is unsatisfiable
- 3. if yes, output *d* and terminate
- 4. if no, increment d, jump to step 2

Igor Konnov 17 of 20

d is the diameter bound iff $\Phi(d)$ holds true:

$$\forall n, t, f. \ \forall \sigma_0, \dots, \sigma_{d+1}. \ \exists \sigma'_0, \dots, \sigma'_d.$$
 quantifier alternation

parameterized + antifier alternation

$$\sigma_0 \xrightarrow{\tau_1} \cdots \xrightarrow{\tau_{d+1}} \sigma_{d+1} \Rightarrow \\ (\sigma_0 = \sigma'_0) \land \sigma'_0 \xrightarrow{\tau'_1} \cdots \xrightarrow{\tau'_d} \xrightarrow{\tau'_d} \sigma'_d \land \bigvee_{i=0}^d \sigma'_i = \sigma_{d+1}$$

- 1. initialize d to 1
- 2. check if $\neg \Phi(d)$ is unsatisfiable
- 3. if yes, output *d* and terminate
- 4. if no, increment d, jump to step 2

LIA

Igor Konnov 17 of 20

Bounded model checking with SMT

algorithm	loca-	RC	z 3	cvc
	tions	110	sec.	sec.
rb	4	<i>n</i> > 3t	0.08	0.08
rb_hybrid	8	n > 3b + 2s	0.09	0.15
rb_omit	8	n > 2t	0.09	0.14
fair_cons	11	$n > \mathbf{t}$	0.27	0.47
floodmin, $k=1$	5	$n > \mathbf{t}$	0.18	0.29
floodmin, $k=2$	7	$n > \mathbf{t}$	0.22	0.52
floodset	7	$n > \mathbf{t}$	0.21	0.49
$kset_omit, k = 1$	4	$n > \mathbf{t}$	0.04	0.03
$kset_omit, k=2$	6	$n > \mathbf{t}$	0.04	0.07
phase_king	34	<i>n</i> > 3t	1.41	5.12
phase_queen	24	<i>n</i> > 4t	0.36	1.92

Byzantine, Send Omission, Crash

Igor Konnov 18 of 20

Actual bug in [BGP89a], corrected in [BGP89b]

```
for k := 1 to t+1 begin
                 (* universal exchange
      send(V):
     for i := 0 to 1 do
           C[i] := the number of recei
                 (* universal exchange 2 *)
     for j := 0 to 1 do begin
           send(C[j] \ge n-t);
           D[j] := the number of received 1's;
     end:
      V := D[1] > t;
                                                              1. Our technique
                 (* King's broadcast *)
                                                              reported a
     if k = p then send(V);
     if D[V] < n-t then
                                                              counterexample
           V := the received message;
end;
```

sal exchanges are needed to achieve this.

2: Phase King solves the Distributed Consensus problem ounds and two-bit messages (or 4(t+1) rounds and single-t > 3t.

Fig. 2. The *Phase King* protocol: code for processor i.

Igor Konnov 19 of 20

Actual bug in [BGP89a], corrected in [BGP89b]

```
V := v_i; (* i 's initial value *)
for m := 1 to t+1 begin
            (* Exchange 1 *)
                                           C(k) \geq n-t
    send(V);
    V := 2;
    for k := 0 to 1 do begin
        C(k) := the number of received k's;
        if C(k) \ge n-t then V := k
    end:
            (* Exchange 2 *)
    send(V);
    for k := 2 downto 0 do begin
        D(k) := the number of received k's;
        if D(k) > t then V := k
    end;
           (* Exchange 3 *)
    if m = i then
       send(V);
   if V = 2 or D(V) < n-t then
        V := MIN (1, received message);
end;
```

Fig. 4. The *Phase King* protocol: code for processor i.

1. Our technique reported a counterexample

2. Corrected by changing inequality to >

Igor Konnov 19 of 20

Conclusions for Part II

Synchronous threshold automata to model the algorithms

Bounded model checking of counter systems

Completeness due to the diameter bounds

Diameters are not always bounded

undecidability

Model checking of distributed algorithms:

from classics towards Tendermint blockchain

part III

Igor Konnov

VMCAI winter school, January 16-18, 2020

Timeline

Verifying synchronous threshold-guarded algorithms

Verifying asynchronous threshold-guarded algorithms

Can we verify **Tendermint consensus?**

Verifying **asynchronous** threshold-guarded distributed algorithms

[K., Veith, Widder. CAV'15]
[K., Lazić, Veith, Widder. POPL'17]
[K., Lazić, Veith, Widder. FMSD'17]
[K., Widder. ISoLA'18]

. . .

Asynchronous systems

 r_1 sends/receives on Monday/Thursday, computes on Friday

 r_2 sends/receives/computes once a month

 r_3 went for a two-month vacation

 r_4 left job without notice

$$r_1$$
 uses r_2 uses r_3 uses r_3 uses r_3 uses r_4 Post

Igor Konnov 4 of 34

Fault-tolerant distributed algorithms

n processes send messages **asynchronously**

f processes are faulty (unknown)

t is an upper bound on f (known)

resilience condition on n, t, and f,

e.g., $n > 3t \land t \ge f \ge 0$

Faults and communication

Byzantine behavior:

[Lamport, Shostak, Pease, 1982]

More than two-thirds must be correct: n > 3t

(resilience)

Communication is reliable:

if a correct process sends a message *m*,

m is eventually delivered to all correct processes

[Fischer, Lynch, Paterson, 1985]

Igor Konnov 6 of 34

Faults and communication

Byzantine behavior:

[Lamport, Shostak, Pease, 1982]

More than two-thirds must be correct: n > 3t (resilience)

Communication is **reliable**:

if a correct process sends a message *m*, *m* is eventually delivered to all correct processes

[Fischer, Lynch, Paterson, 1985]

Igor Konnov 6 of 34

Byzantine model checker

forsyte.at/software/bymc

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

ABA	FRB (CBC, C1CS	CF1S		
STRB	NBAC	NBACG		BOSCO	
JACM'85	JACM' 96	DSN' 01	DSN' 06		
DC' 87	HASE' 9	7 DC' 02		DISC' 08	

An example

One-step Byzantine asynchronous consensus

every process starts with a value $v_i \in \{0, 1\}$

agreement: no two processes decide differently

validity: if a correct process decides on v, then v was the initial value of at least one process

termination: all correct processes eventually decide

decide in one communication step, when there are "not too many faults"

One-step Byzantine asynchronous consensus

every process starts with a value $v_i \in \{0, 1\}$

agreement: no two processes decide differently

validity: if a correct process decides on v, then v was the initial value of at least one process

termination: all correct processes eventually decide

decide in one communication step, when there are "not too many faults"

```
input V_{\mathcal{D}}
   send \langle VOTE, v_p \rangle to all processors;
3
   wait until n-t VOTE messages have been received;
5
   if more than \frac{n+3t}{2} VOTE messages contain the same value V
   then DECIDE(v);
   if more than \frac{n-t}{2} VOTE messages contain the same value V,
        and there is only one such value v
10
   then V_{\mathcal{D}} \leftarrow V;
11
12
  call Underlying-Consensus(V_D);
```

resilience: of n > 3t processes, $f \le t$ processes are Byzantine

fast termination: when n > 5t and t = 0 and n > 7t

Formalizing pseudo-code

Many ways to formalize distributed algorithms

General languages

for instance, TLA+

model checking is hard

Parametric Promela

relatively easy to understand

supported by ByMC via abstraction

Threshold automata

special input for ByMC

efficient model checking with SMT

Igor Konnov 12 of 34

(Asynchronous) threshold automata

threshold guards, e.g., ϕ_A is defined as $s_0 + s_1 + f \ge n - t$

increments of shared variables, e.g., s₀₊₊

run n-f copies provided that there are $f \le t$ Byzantine faults and n > 3t

Igor Konnov 13 of 34

Verifying the asynchronous algorithms

Verifying these algorithms?

Parameterized verification problem:

$$\forall n, f.$$
 $n-f$ copies of $\models \varphi$

Our approach:

- (I) Counting processes,
- (II) Acceleration,
- (III) Bounded model checking, and

(IV) Schemas

Igor Konnov 15 of 34

(I) Counting processes

Threshold guards (e.g., $s_0 + s_1 + f \ge n - t$) do not use process ids

A transition by a single process:

$$\left\{ \kappa_{ extsf{V1}} = 4 \, \wedge \, \kappa_{ extsf{SENT}} = 1 \, \wedge \, s_0 = 1
ight\}$$
 $\kappa_{ extsf{V1}}$; $\kappa_{ extsf{SENT}}$;

Igor Konnov 16 of 34

(II) Acceleration

The same transition by unboundedly many processes in one step:

Acceleration factor can be any natural number δ

Igor Konnov 17 of 34

(III) Bounded model checking with SMT

A transition by δ_i processes (in linear integer arithmetic):

$$T(\sigma_{i}, \sigma_{i+1}, \delta_{i}) = \begin{bmatrix} \kappa_{V1}^{i+1} = \kappa_{V1}^{i} - \delta_{i} \wedge \\ \kappa_{SENT}^{i+1} = \kappa_{SENT}^{i} + \delta_{i} \wedge \\ s_{0}^{i+1} = s_{0}^{i} + \delta_{i} \end{bmatrix}$$

$$\sigma_{i} \bigcirc \longrightarrow \bigcirc \sigma_{i+1}$$

$$\sigma_{i+1} = \sigma_{i}$$

Execution:

 $T(\sigma_0, \sigma_1, \delta_0) \wedge T(\sigma_1, \sigma_2, \delta_1) \wedge \cdots \wedge T(\sigma_{k-1}, \sigma_k, \delta_{k-1}) \wedge \mathsf{Spec}$ SMT formula:

how long should the executions be?

Igor Konnov 18 of 34

Completeness of bounded model checking

What we can do:

$\models \varphi$

What we want to do:

Complete and efficient BMC for:

- reachability

- safety and liveness

[K., Veith, Widder: CAV'15]

[K., Lazić, Veith, Widder: POPL'17]

Igor Konnov 19 of 34

(Asynchronous) threshold automata

threshold guards, e.g., ϕ_A is defined as $s_0 + s_1 + f \ge n - t$

increments of shared variables, e.g., s₀₊₊

run n-f copies provided that there are $f \le t$ Byzantine faults and n > 3t

Mover analysis

Exploring all bounded executions is inefficient

The argument contains:

- reordering:

- acceleration

$$s_{0++}$$
; s_{0++} ; s_{1++} becomes $s_{0} += 2$; s_{1++}

Schema: $\{pre_1\}$ $actions_1$ $\{post_1\}$... $\{pre_k\}$ $actions_k$ $\{post_k\}$

Example:

$$\begin{array}{lll} \{\} & (\mathsf{V0} \to \mathsf{SE0})^{\delta_1} & \{\mathsf{s_0} + \mathit{f} \geq \tau_{\mathsf{D0}}\} & (\mathsf{V1} \to \mathsf{SE1})^{\delta_2} & \{\ldots, \mathsf{s_1} + \mathit{f} \geq \tau_{\mathsf{D1}}\} \\ (\mathsf{V0} \to \mathsf{SE0})^{\delta_3}, (\mathsf{V1} \to \mathsf{SE1})^{\delta_4} & \{\ldots, \phi_{\mathsf{A}}\} & (\mathsf{SE0} \to \mathsf{D0})^{\delta_5}, (\mathsf{SE1} \to \mathsf{D1})^{\delta_6} \\ & \{\kappa_{\mathsf{D0}}^6 \neq 0 \land \kappa_{\mathsf{D1}}^6 \neq 0\} \end{array}$$

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

- (a) the schema does not violate the property (UNSAT), or
- (b) there is a counterexample (SAT)

Schema: $\{pre_1\}$ $actions_1$ $\{post_1\}$... $\{pre_k\}$ $actions_k$ $\{post_k\}$

Example:

$$\begin{array}{lll} \{\} & (\mathsf{V0} \to \mathsf{SE0})^{\delta_1} & \{\mathsf{s_0} + \mathit{f} \geq \tau_{\mathsf{D0}}\} & (\mathsf{V1} \to \mathsf{SE1})^{\delta_2} & \{\ldots, \mathsf{s_1} + \mathit{f} \geq \tau_{\mathsf{D1}}\} \\ (\mathsf{V0} \to \mathsf{SE0})^{\delta_3}, (\mathsf{V1} \to \mathsf{SE1})^{\delta_4} & \{\ldots, \phi_{\mathsf{A}}\} & (\mathsf{SE0} \to \mathsf{D0})^{\delta_5}, (\mathsf{SE1} \to \mathsf{D1})^{\delta_6} \\ & \{\kappa_{\mathsf{D0}}^6 \neq 0 \land \kappa_{\mathsf{D1}}^6 \neq 0\} \end{array}$$

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

- (a) the schema does not violate the property (UNSAT), or
- (b) there is a counterexample (SAT)

Schema: $\{pre_1\}$ $actions_1$ $\{post_1\}$... $\{pre_k\}$ $actions_k$ $\{post_k\}$

Example:

$$\begin{array}{lll} \{\} & (\mathsf{V0} \to \mathsf{SE0})^{\delta_1} & \{\mathsf{s_0} + \mathit{f} \geq \tau_{\mathsf{D0}}\} & (\mathsf{V1} \to \mathsf{SE1})^{\delta_2} & \{\ldots, \mathsf{s_1} + \mathit{f} \geq \tau_{\mathsf{D1}}\} \\ (\mathsf{V0} \to \mathsf{SE0})^{\delta_3}, (\mathsf{V1} \to \mathsf{SE1})^{\delta_4} & \{\ldots, \phi_{\mathsf{A}}\} & (\mathsf{SE0} \to \mathsf{D0})^{\delta_5}, (\mathsf{SE1} \to \mathsf{D1})^{\delta_6} \\ & \{\kappa_{\mathsf{D0}}^6 \neq 0 \land \kappa_{\mathsf{D1}}^6 \neq 0\} \end{array}$$

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

- (a) the schema does not violate the property (UNSAT), or
- (b) there is a counterexample (SAT)

Schema: $\{pre_1\}$ actions₁ $\{post_1\}$... $\{pre_k\}$ actions_k $\{post_k\}$

Example:

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$,

- (a) the schema does not violate the property (UNSAT), or
- (b) there is a counterexample (SAT)

Schema: $\{pre_1\}$ $actions_1$ $\{post_1\}$... $\{pre_k\}$ $actions_k$ $\{post_k\}$

Example:

$$\begin{array}{lll} \{\} & (\mathsf{V0} \to \mathsf{SE0})^{\delta_1} & \{\mathsf{s_0} + \mathit{f} \geq \tau_{\mathsf{D0}}\} & (\mathsf{V1} \to \mathsf{SE1})^{\delta_2} & \{\ldots, \mathsf{s_1} + \mathit{f} \geq \tau_{\mathsf{D1}}\} \\ (\mathsf{V0} \to \mathsf{SE0})^{\delta_3}, (\mathsf{V1} \to \mathsf{SE1})^{\delta_4} & \{\ldots, \phi_{\mathsf{A}}\} & (\mathsf{SE0} \to \mathsf{D0})^{\delta_5}, (\mathsf{SE1} \to \mathsf{D1})^{\delta_6} \\ & \{\kappa_{\mathsf{D0}}^6 \neq 0 \land \kappa_{\mathsf{D1}}^6 \neq 0\} \end{array}$$

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

- (a) the schema does not violate the property (UNSAT), or
- (b) there is a counterexample (SAT)

From reachability to safety & liveness

A) A temporal logic for bad executions

$$\mathbf{E}\left(\varphi_1 \wedge \Diamond \Box \left(\varphi_2 \vee \varphi_3\right)\right)$$

B) Enumerating shapes of counterexamples

C) Property specific mover analysis

Details in [K., Lazić, Veith, Widder. POPL'17]

Overview of the verification algorithm

Threshold automaton \longrightarrow schemas $\{S_1, \dots, S_k\}$

$$egin{array}{c|c} Z3 &\models S_1 & \text{sat} \\ Z3 &\models S_2 & \text{counterexample} \\ \hline Z3 &\models S_k & \end{array}$$

unsat?

Overview of the verification algorithm

Threshold automaton \longrightarrow schemas $\{S_1, \dots, S_k\}$

Overview of the verification algorithm

Threshold automaton \longrightarrow schemas $\{S_1, \dots, S_k\}$

Vienna Scientific Cluster

Short counterexamples for safety or liveness

Safety & liveness (POPL'17)

Every lasso can be transformed into a bounded one. The bound depends on the process code and the specification, not the parameters.

Experiments

Byzantine model checker

[forsyte.at/software/bymc]

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

ABA	FRB CBC, C1CS	CF1S
STRB	NBAC NBACG	BOSCO
JACM'85	JACM' 96 DSN' 01	DSN' 06
DC' 87	HASE' 97 DC' 02	DISC' 08

More threshold guards...

Reliable broadcast	$x \ge t + 1$ $x \ge n - t$	[Srikanth, Toueg'86]
Hybrid broadcast	$x \geq t_b + 1$ $x \geq n - t_b - t_c$	[Widder, Schmid'07]
Byzantine agreement	$x \geq \lceil \frac{n}{2} \rceil + 1$	[Bracha, Toueg'85]
Non-blocking atomic commitment	$x \ge n$	[Raynal'97], [Guerraoui'01]
Condition-based consensus	$x \ge n - t$ $x \ge \left\lceil \frac{n}{2} \right\rceil + 1$	[Mostéfaoui, Mourgaya, Parvedy, Raynal'03]
Consensus in one communication step	$x \ge n - t$ $x \ge n - 2t$	[Brasileiro, Greve, Mostéfaoui, Raynal'03]
Byzantine one-step consensus	$x \geq \lceil \frac{n+3t}{2} \rceil + 1$	[Song, van Renesse'08]

In general, there is a resilience condition, e.g., n > 3t, n > 7t

Benchmarks

Each benchmark has two versions:

- 1. Threshold automaton
- 2. Promela code

hand-written automatic abstraction

Condition-based consensus	Consensus in one comm. step				
One-step consensus	BOSCO				
Non-blocking atomic commitment (2 versions)					
Reliable broadcast	Folklore broadcast				
	Asynchronous Byzantine agreement				

Time to check the algorithms

Promela abstractions • Threshold automata

Igor Konnov 30 of 34

Sequential vs. parallel (256 MPI cores)

Time to verify (sec., log2 scale)

Igor Konnov 31 of 34

Speedup

sometimes, the number of schemas is smaller than the number of cores (256)

Promela vs. threshold automata: input

Igor Konnov 33 of 34

Promela vs. threshold automata: input

Igor Konnov 33 of 34

Conclusions for Part III

Threshold automata to model asynchronous algorithms

Bounded model checking of counter systems

Completeness due to the bounds

... for safety and liveness

Extending threshold automata

standard TA

increments in loops (NCTA)

$$x^{++}$$
 ℓ_1
 $n \leq x$
 ℓ_2

piecewise monotone (PMTA)

bounded difference (BDTA)

reversible (RTA)

reversal bounded (RBTA)

Like reversible automata, but increments and decrements of variables may alternate a bounded number of times.

All flavors of threshold automata

[CONCUR'18]

Level	Reversals	Canonical	Bounded diameter	Flattable	Decidable reachability	Fragment
X	0	√	√	√	√	TA
p.m. $f(x)$	0	✓	\checkmark	\checkmark	\checkmark	PMTA
X	$\leq k$	✓	\checkmark	\checkmark	\checkmark	RBTA
X	0	X	X	\checkmark	\checkmark	NCTA
x - y	0	✓	X	X	×	BDTA
X	∞	✓	X	X	X	RTA

I.K.

Josef Widder

```
bool v := input_value({0, 1});
  int r := 1;
  while (true) do
   send (R,r,v) to all;
   wait for n - t messages (R,r,*);
   if received (n + t) / 2 messages (R,r,w)
   then send (P,r,w,D) to all;
   else send (P,r,?) to all;
   wait for n - t messages (P,r,*);
   if received at least t + 1
if received at least (n + t) / 2
then decide w;
} else v := random(\{0,1\}); /* unclear -> coin toss */
```

[Ben-Or, PODC 1983]

```
bool v := input_value({0, 1});
  int r := 1;
  while (true) do
   send (R,r,v) to all;
  wait for n - t messages (R,r,*);
   if received (n + t) / 2 messages (R,r,w)
   then send (P,r,w,D) to all;
   else send (P,r,?) to all;
   wait for n - t messages (P,r,*);
   if received at least t + 1
if received at least (n + t) / 2
then decide w;
} else v := random(\{0,1\}); /* unclear -> coin toss */
```

[Ben-Or, PODC 1983]

```
bool v := input_value({0, 1});
  int r := 1;
  while (true) do
  send (R,r,v) to all;
  wait for n - t messages (R,r,*);
   if received (n + t) / 2 messages (R,r,w)
   then send (P,r,w,D) to all;
   else send (P,r,?) to all;
  wait for n - t messages (P,r,*);
  if received at least t + 1
     messages (P,r,w,D) then {
                         /* enough support -> update estimate */
   v := w;
if received at least (n + t) / 2
messages (P,r,w,D)
then decide w;
                          /* strong majority -> decide */
} else v := random(\{0,1\}); /* unclear -> coin toss */
```

```
bool v := input_value({0, 1});
 int r := 1;
  while (true) do
  send (R,r,v) to all;
 wait for n - t messages (R, r, *);
  if received (n + t) / 2 messages (R,r,w)
  then send (P,r,w,D) to all;
  else send (P,r,?) to all;
  wait for n - t messages (P,r,*);
if received at least t + 1
     messages (P,r,w,D) then {
                   /* enough support -> update estimate */
   v := w;
 if received at least (n + t) / 2
messages (P,r,w,D)
then decide w;
                   /* strong majority —> decide */
} else v := random(\{0,1\}); /* unclear -> coin toss */
r := r + 1;
 od
                                      [Ben-Or, PODC 1983]
```

Probabilistic threshold-guarded algorithms

[CONCUR'19]

No consensus algorithm for asynchronous systems (FLP'85)

Coin toss to break ties: $value := random(\{0, 1\})$

Ben-Or's, Bracha's consensus, RS-Bosco, k-set agreement

Compositional reasoning and reduction for multiple rounds

ByMC to reason about a single round

Nathalie Bertrand

I.K.

Marijana Lazić

Josef Widder

Model checking of distributed algorithms:

from classics towards Tendermint blockchain

part IV

Igor Konnov

VMCAI winter school, January 16-18, 2020

Timeline

Verifying synchronous threshold-guarded algorithms

Verifying asynchronous threshold-guarded algorithms

Can we verify **Tendermint consensus?**

Tendermint consensus

Algorithm 1 Tendermint consensus algorithm

```
1: Initialization:
2: h_p := 0
                                                                                  /* current height, or consensus instance we are currently executing */
3: round_p := 0
                                                                                                                           /* current round number */
4: step_p \in \{propose, prevote, precommit\}
5: decision_p[] := nil
6: lockedValue_p := nil
7: lockedRound_n := -1
8: validValue_p := nil
9: validRound_p := -1
10: upon start do StartRound(0)
11: Function StartRound(round):
12: round_n \leftarrow round
13: step_p \leftarrow propose
14: if proposer(h_p, round_p) = p then
         if validValue_p \neq nil then
15:
16:
           proposal \leftarrow validValue_{p}
17:
         else
           proposal \leftarrow getValue()
18:
         broadcast \langle PROPOSAL, h_p, round_p, proposal, validRound_p \rangle
19:
20:
21:
         schedule OnTimeoutPropose(h_p, round_p) to be executed after timeoutPropose(round_p)
22: upon \langle PROPOSAL, h_p, round_p, v, -1 \rangle from proposer(h_p, round_p) while step_p = propose do
23: if valid(v) \wedge (lockedRound_p = -1 \vee lockedValue_p = v) then
         broadcast \langle PREVOTE, h_p, round_p, id(v) \rangle
24:
       else
25:
26:
        broadcast \langle PREVOTE, h_n, round_n, nil \rangle
27: step_p \leftarrow prevote
28: upon \langle PROPOSAL, h_p, round_p, v, vr \rangle from proposer(h_p, round_p) AND 2f + 1 \langle PREVOTE, h_p, vr, id(v) \rangle while
    step_p = propose \land (vr \ge 0 \land vr < round_p) do
29: if valid(v) \wedge (lockedRound_n \leq vr \vee lockedValue_n = v) then
30:
         broadcast \langle PREVOTE, h_p, round_p, id(v) \rangle
31: else
         broadcast \langle \mathsf{PREVOTE}, h_p, round_p, nil \rangle
32:
33: step_p \leftarrow prevote
34: upon 2f+1 (PREVOTE, h_p, round_p, *) while step_p = prevote for the first time do
35: schedule OnTimeoutPrevote(h_p, round_p) to be executed after timeoutPrevote(round_p)
36: upon \langle \mathsf{PROPOSAL}, h_p, round_p, v, * \rangle from \mathsf{proposer}(h_p, round_p) AND 2f + 1 \langle \mathsf{PREVOTE}, h_p, round_p, id(v) \rangle while
    valid(v) \wedge step_p \geq prevote for the first time do
37: if step_p = prevote then
         lockedValue_p \leftarrow v
         lockedRound_n \leftarrow round_n
39.
         broadcast \langle PRÉCOMMIT, \hat{h}_p, round_p, id(v)) \rangle
41:
       step_p \leftarrow precommit
42: validValue_p \leftarrow v
43: validRound_p \leftarrow round_p
44: upon 2f + 1 (PREVOTE, h_p, round_p, nil) while step_p = prevote do
45: broadcast \langle PRECOMMIT, h_p, round_p, nil \rangle
46: step_p \leftarrow precommit
47: upon 2f+1 \langle \mathsf{PRECOMMIT}, h_p, round_p, * \rangle for the first time do
48: schedule OnTimeoutPrecommit(h_p, round_p) to be executed after timeoutPrecommit(round_p)
49: upon \langle \mathsf{PROPOSAL}, h_p, r, v, * \rangle from \mathsf{proposer}(h_p, r) AND 2f + 1 \langle \mathsf{PRECOMMIT}, h_p, r, id(v) \rangle while decision_p[h_p] = nil do
50: if valid(v) then
51:
         decision_p[h_p] = v
52:
         h_p \leftarrow h_p + 1
         reset lockedRound_p, lockedValue_p, validRound_p and validValue_p to initial values and empty message log
53:
         StartRound(0)
55: upon f + 1 \ \langle *, h_n, round, *, * \rangle with round > round_n do
56: StartRound(round)
57: Function OnTimeoutPropose(height, round):
58: if height = h_p \wedge round = round_p \wedge step_p = propose then
```

Challenges for ByMC

Unbounded height of the blockchain

Unbounded number of rounds within one height

Rotating coordinator, breaking symmetry

Partial synchrony to guarantee liveness

Correct processes have more than 2/3 of voting power

Can we help?

I read that paper about Byzantine Model Checker

Model the algorithm as a threshold automaton

Verify safety and liveness for all $n, t, f : n > 3t \land t \ge f \ge 0$

I have heard this talk by Leslie Lamport

Let's write it in TLA+

Run the **TLC model checker** for fixed parameters

TLC takes forever...

Run APALACHE for fixed parameters

Can we help?

I read that paper about Byzantine Model Checker

Model the algorithm as a threshold automaton

Verify safety and liveness for all $n, t, f : n > 3t \land t \ge f \ge 0$

I have heard this talk by Leslie Lamport

Let's write it in TLA+

Run the **TLC model checker** for fixed parameters

TLC takes forever...

Run **APALACHE** for fixed parameters

Symbolic model checker for TLA⁺

[OOPSLA'19]

Focus on distributed algorithms

Invariants

- Fixed parameters, bounded executions
- Inductive invariants
- Fixed parameters

[forsyte.at/research/apalache/]

What we were doing in the last months...

Specifying several Tendermint protocols in TLA⁺:

- fast synchronization
- light client
- consensus, tuned for fork detection

[github.com/interchainio/verification]

Medium DAILY DIGEST

Stories for Igor Konnov

Today's highlights

Functional Programming features in Scala

I've been exploring functional programming with Scala and its eco system for the past few months.

Kevin Lawrence in Towards Data Science ★ 6 min read

How to understand your program's memory

When coding in a language like C or C++ you can interact with your memory in a more low-level way. Sometimes...

Tiago Antunes in freeCodeCamp.org 6 min read

Ethereum Classic (ETC) is currently being 51% attacked

On 1/5/2019, Coinbase detected a deep reorg of the Ethereum Classic blockchain that included a double spend...

Mark Nesbitt in The Coinbase Blog 7 min read

Fork accountability

Detect the peers that caused a fork — violation of agreement

Ran Apalache: 4 peers, 2 faults, fault threshold is 1:

- found equivocation, 2 hours
- found amnesia, 2 hours
- on other scenarios up to 15 steps, 7 CPU cores, 6.5 hours

Proving that no other scenarios exist? ... for all parameters?

Igor Konnov 10 of 12

Fork accountability

Detect the peers that caused a fork — violation of agreement

Ran Apalache: 4 peers, 2 faults, fault threshold is 1:

- found equivocation, 2 hours
- found amnesia, 2 hours
- on other scenarios up to 15 steps, 7 CPU cores, 6.5 hours

Proving that no other scenarios exist? ... for all parameters?

Igor Konnov 10 of 12

Conclusions

Reasoning about fault-tolerant algorithms is hard

...but fun!

Practical algorithms are even harder

Threshold guards are everywhere

Specialized tools for narrow classes, e.g., ByMC vs.

General tools for broader classes, e.g., Apalache

Future

Supporting as many features as in TLC

TLA⁺ users specify industrial-scale distributed protocols

all kinds of Paxos, Raft, key-value stores, group membership

These are large and complex specifications

[Newcombe et al.'14]

Amazon used 80 CPU cores to find a trace of 35 steps

Semi-automated techniques that would get help from the user

Reduction arguments, abstractions, etc.